931 resultados para Superoxide radical
Resumo:
Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.
Resumo:
The reduction of oxygen in the presence of carbon dioxide has been investigated by cyclic voltammetry at a gold microdisk electrode in the two room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222] [N(Tf)(2)]). With increasing levels of CO2, cyclic voltammetry shows an increase in the reductive wave and diminishing of the oxidative wave, indicating that the generated superoxide readily reacts with carbon dioxide. The kinetics of this reaction are investigated in both ionic liquids. The reaction was found to proceed via a DISP1 type mechanism in [EMIM][N(Tf)(2)] with an overall second-order rate constant of 1.4 +/- 0.4 x 10(3) M-1 s(-1). An ECE or DISP1 mechanism was determined to be the most likely pathway for the reaction in [N-6222][N(Tf)(2)], with an overall second-order rate constant of 1.72 +/- 0.45 x 10(3) m(-1) s(-1).
Resumo:
The electrochemical reduction of oxygen in two different room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide ([N-6222][N(Tf)(2)]) was investigated by cyclic voltammetry at a gold microdisk electrode. Chronoamperometric measurements were made to determine the diffusion coefficient, D, and concentration, c, of the electroactive oxygen dissolved in the ionic liquid by fitting experimental transients to the Aoki model. [Aoki, K.; et al. J. Electroanal. Chem. 1981, 122, 19]. A theory and simulation designed for cyclic voltammetry at microdisk electrodes was then employed to determine the diffusion coefficient of the electrogenerated superoxide species, O-2(.-), as well as compute theoretical voltammograms to confirm the values of D and c for neutral oxygen obtained from the transients. As expected, the diffusion coefficient of the superoxide species was found to be smaller than that of the oxygen in both ionic liquids. The diffusion coefficients of O-2 and O-2(.-) in [N-6222][N(Tf)(2)], however, differ by more than a factor of 30 (D-O2 = 1.48 x 10(-10) m(2) s(-1), DO2.- = 4.66 x 10(-12) m(2) s(-1)), whereas they fall within the same order of magnitude in [EMIM][N(Tf)(2)] (D-O2 = 7.3 x 10(-10) m(2) s(-1), DO2.- = 2.7 x 10(-10) m(2) s(-1)). This difference in [N-6222][N(Tf)(2)] causes pronounced asymmetry in the concentration distributions of oxygen and superoxide, resulting in significant differences in the heights of the forward and back peaks in the cyclic voltammograms for the reduction of oxygen. This observation is most likely a result of the higher viscosity of [N-6222][N(Tf)(2)] in comparison to [EMIM][N(Tf)(2)], due to the structural differences in cationic component.
Resumo:
Concise syntheses of the substituted enynediones 28a, 33b and 36 starting from the cyclohexenealdehyde 18, corresponding to ring A in the taxanes, and the vinylstannane 24, are described. Treatment of 36 with Bu3SnH–AIBN did not lead to the oxy-substituted taxadiene 37 expected from a tandem radical macrocyclisation–radical transannulation sequence; instead, a mixture of unidentified products resulted. When the PMB ether 33b corresponding to the alcohol 36 was treated with Bu3SnH–AIBN under similar conditions, p-anisaldehyde was isolated, as a major by-product, but no evidence for the formation of a taxadiene could be observed. In contrast, the iododienynedione 41, i.e., deoxy 36, underwent a tandem radical macrocyclisation–transannulation sequence, when treated with Bu3SnH–AIBN, leading to the tetraoxy-bis-nortaxadiene 42 in 44% yield. Attempts to synthesise the alcohol 28b from the silyl ether 28a en route to the iodide 28c instead gave the substituted tetrahydrofuran 29 via an intramolecular oxy-Michael reaction.
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
5-exo Cyclisation of vinyl-, aryl- and alkyl-radicals onto the aryl group of arylcarboxamides is followed by beta-scission of the resulting spirocyclohexadienyl radicals with ejection of a carbamoyl radical. The fate of this radical depends on the substrate but, in the cases studied, either 5-endo cyclisation or direct reduction follows to give phthalimides, biaryls or beta-arylethylamines.
Resumo:
Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the