961 resultados para Sun: incompressible waves
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.
Resumo:
In the present paper the measured values of vibrational temperature behind strong shock waves are compared with theoretical ones. The histories of vibrational temperature behind strong shock waves in a shock tube were measured using two monochromators. The test gas was pure nitrogen at 100-300Pa, and the speeds of shock waves were 5.0-6.0km/s. The electronic temperature of N-2(+) was also approximately determined from experiment and compared with the experimental vibrational temperature. The results show that the presented calculational method is effective, and the electronic energy of N2+ is excited much faster than its vibrational energy. One Langmuir probe was used to determine the effective time of region 2. The influence of viscosity in the shock tube is also analyzed.
Resumo:
In the current paper an analytical solution for diffusive wave equation with the concentrate-distributed lateral inflow is yielded. Finite-difference numerical method is also employed to validate this model. The backwater effects drawn from lateral inflow on the mainstream are examined finally.
Receptivity to free-stream disturbance waves for blunt cone axial symmetry hypersonic boundary layer
Resumo:
Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.
Resumo:
Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.
Resumo:
Over the past six years Lowestoft College has embraced the revolution in mobile learning by welcoming Web 2.0, social media, cloud computing and Bring Your Own Device (BYOD). This open attitude to new technologies has led to a marked improvement in student achievement rates, has increased staff and student satisfaction and has resulted in a variety of cost savings for senior management during the current economic downturn.
Resumo:
2 The flow of a compressible viscous fluid through a straight pipe.(可压缩黏性流体在直管中的流动1943年)
3 Two dimensional irrotational mixed subsonic and supersonic flow of a compressible fluid and the upper critical Mach number(可压缩流体二维无旋亚声速和超声速混合型流动及上临界马赫数1946年)
4 On the stability of transonic flows(论跨声速流的稳定性1947年)
5 The propagation of a spherical or a cylindrical wave of finite amplitude and the production of shock waves(有限振幅球面波或柱面波的传播及激波的产生1947年)
6 Two-dimensional irrotational transonic flows of a compressible fluid(可压缩流体二维无旋跨声速流动1948年)
7 On the hodograph method(关于速度图方法1949年)
8 Two-dimensional transonic flow past airfoils(绕翼型的二维跨声速流1951年)
9 On the stability of two-dimensional smooth transonic flows(论二元光滑跨声速流的稳定性1951年)
10 On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers(中等雷诺数下不可压缩黏性流体绕平板的流动1953年)
11 Reflection of a weak shock wave from a boundary layer along a flat plate.I:Interaction of weak shock waves with laminar and turbulent boundary lavers analyzed by momentum-integral method(弱激波从沿平板的边界层的反射Ⅰ:用动量积分方法分析弱激波与层流和湍流边界层的相互作用1953年)
12 Reflection of weak shock wave from a boundary layer along a flat plate.Ⅱ:Interaction of oblique shock wave with a laminar boundary layer analyzed by differential-equation method(弱激波从沿平板的边界层的反射Ⅱ:用微分方程方法分析斜激波与层流边界层的相互作用1953年)
13 Plane subsonic and transonic potential flows(平面亚、跨音速势流1954年)
14 A similarity rule for the interaction between a conical field and a plane shock(锥型流和激波相互作用的相似律1955年)
15 Viscous flow along a flat plate moving at high supersonic speeds(沿高超声速运动平板的黏性流动【Ⅰ】1956年)
16 Viscous flow along a flat plate moving at high supersonic speeds(沿高超声速运动平板的黏性流动【Ⅱ】1956年)
17 The effects of Prandtl number on high-speed viscous flows over a flat plate(Prandtl数对绕平板高速黏性流的影响1956年)
18 Compressible viscous flow past a wedge moving at hypersonic speeds(楔的高超声速可压缩黏性绕流1956年)
19 Dissociation effects in hypersonic viscous flows(高超声速黏性流动中的离解效应1957年)
20 现代空气动力学的问题(1957年)
2l 在关于苏联发射成功第一颗人造卫星座谈会上的发言记录(1957年)
22 高超速钝体湍流传热问题(1963年)
23 宇宙飞船的回地问题(1965年)
24 激波的介绍
郭永怀生平
郭永怀传
Resumo:
19 p.
Resumo:
Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.
Resumo:
A new transition prediction model is introduced, which couples the intermittency effect into the turbulence transport equations and takes the characteristics of fluid transition into consideration to mimic the exact process of transition. Test cases include a two-dimensional incompressible plate and a two-dimensional NACA0012 airfoil. Performance of this transition model for incompressible flows is studied, with numerical results consistent to experimental data. The requirement of grid resolution for this transition model is also studied.
Resumo:
Internal waves are an important factor in the design of drill operations and production in deep water, because the waves have very large amplitude and may induce large horizontal velocity. How the internal waves occur and propagate over benthal terrain is of great concern for ocean engineers. In the present paper, we have formulated a mathematical model of internal wave propagation in a two-layer deep water, which involves the effects of friction, dissipation and shoaling, and is capable of manifesting the variation of the amplitude and the velocity pattern. After calibration by field data measured at the Continental Slope in the Northern South China Sea, we have applied the model to the South China Sea, investigating the westward propagation of internal waves from the Luzon Strait, where internal waves originate due to the interaction of benthal ridge and tides. We find that the internal wave induced velocity profile is obviously characterized by the opposite flow below and above the pycnocline, which results in a strong shear, threatening safety of ocean structures, such as mooring system of oil platform, risers, etc. When internal waves propagate westwards, the amplitude attenuates due to the effects of friction and dissipation. The preliminary results show that the amplitude is likely to become half of its initial value at Luzon Strait when the internal waves propagate about 400 kilometers westwards.