480 resultados para Streak gonads
Resumo:
CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.
Resumo:
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Resumo:
Maternal effects are a mother¿s non-genetic contributions to development that alter phenotypic traits in offspring. Maternal effects can take the form of prenatal allocation of resources, such as the deposition of androgens into egg yolks. For example, elevated yolk testosterone increases male sexual behaviors such as copulation solicitation and courtship displays in some avian species, in addition to aggressive behaviors like pecks and intimidating postures towards same-sex competitors. However, the mechanism connecting in ovo testosterone exposure with changes in sexual and aggressive behaviors has yet to be elucidated. While testosterone released by the gonads is important in the activation of sexual behaviors, it must undergo conversion to estrogen by the enzyme aromatase in the pre-optic area (POA) of the avian brain for full expression of sexual activity. POA aromatase is also necessary for the activation of aggressive behaviors in male birds. This experiment tested the hypothesis that elevated yolk testosterone leads to changes in POA aromatase activity and levels of gonadal testosterone, as these two endocrine parameters may mediate the effect of yolk testosterone on the frequency of sexual and aggressive behaviors. The effect of elevated yolk testosterone on gonadal testosterone levels and aromatase activity in the POA of 3-day-old domestic chickens Gallus gallus domesticus was investigated. Unincubated eggs were injected with either 10 ng testosterone in 50 ¿L sesame oil (¿T chicks¿) or 50 ¿L sesame oil (¿C chicks¿). At 3 days post-hatch, gonadal testosterone content was measured after steroid extraction using an EIA, and aromatase activity in the POA was quantified by measuring the production of tritiated water from [1ß-3H]-androstenedione. I predicted that gonadal testosterone levels and brain aromatase activity would be higher in T chicks, however found no difference between treatments. Though juvenile T production peaks at 3 days post-hatch, it is possible that the reproductive systems, including the testes and POA, are not fully developed at this time.
Resumo:
In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.
Resumo:
Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads.
Resumo:
The use of dental processing software for computed tomography (CT) data (Dentascan) is described on postmortem (pm) CT data for the purpose of pm identification. The software allows reconstructing reformatted images comparable to conventional panoramic dental radiographs by defining a curved reconstruction line along the teeth on oblique images. Three corpses that have been scanned within the virtopsy project were used to test the software for the purpose of dental identification. In every case, dental panoramic images could be reconstructed and compared to antemortem radiographs. The images showed the basic component of teeth (enamel, dentin, and pulp), the anatomic structure of the alveolar bone, missing or unerupted teeth as well as restorations of the teeth that could be used for identification. When streak artifacts due to metal-containing dental work reduced image quality, it was still necessary to perform pm conventional radiographs for comparison of the detailed shape of the restoration. Dental identification or a dental profiling seems to become possible in a noninvasive manner using the Dentascan software.
Resumo:
Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.
Resumo:
Histological serial sections, three-dimensional reconstructions and morphometry served to study the postnatal development of V1 in tree shrews. The main objectives were to evaluate the expansion of V1, the implications of its growth on the occipital cortex and, vice versa, the effects of the expanding neocortex on the topography of V1. The future V1 was identified on postnatal day 1 by its granular layer IV, covering the superior surface of the occipital cortices including the poles. A subdivision of layer IV, distinctive for the binocular part, was evident in the central region. V1 expanded continuously with age into all directions succeeded by the maturation of layering. The monocular part was recognized from day 15 onward, after the binocular part had reached its medial border. In reference to the retinotopic map of V1, regions emerged in a coherent temporo-spatial sequence delineating the retinal topography in a central to peripheral gradient beginning with the visual streak representation. The growth of V1 was greatest until tree shrews open their eyes, culminated during adolescence, and completed after a subsequent decrease in the young adult. Simultaneous expansion of the neocortex induced a shifting of V1. Translation and elongation of V1 entailed that the occipital cortex covered the superior colliculi along with a downward rotation of the poles. The enlargement of the occipital part of the hemispheres was in addition associated with the formation of a small occipital horn in the lateral ventricles, indicating an incipient 'true' occipital lobe harbouring mainly cortices involved in visual functions.
Resumo:
Glucocorticosteroid-induced spinal osteoporosis (GIOP) is the most frequent of all secondary types of osteoporosis. The understanding of the pathophysiology of glucocorticoid (GC) induced bone loss is of crucial importance for appropriate treatment and prevention of debilitating fractures that occur predominantly in the spine. GIOP results from depressed bone formation due to lower activity and higher death rate of osteoblasts on the one hand, and from increase bone resorption due to prolonged lifespan of osteoclasts on the other. In addition, calcium/phosphate metabolism may be disturbed through GC effects on gut, kidney, parathyroid glands and gonads. Therefore, therapeutic agents aim at restoring balanced bone cell activity by directly decreasing apoptosis rate of osteoblasts (e.g., cyclical parathyroid hormone) or by increasing apoptosis rate of osteoclasts (e.g., bisphosphonates). Other therapeutical efforts aim at maintaining/restoring calcium/phosphate homeostasis: improving intestinal calcium absorption (using calcium supplementation, vitamin D and derivates) and avoiding increased urinary calcium loss (using thiazides) prevent or counteract a secondary hyperparthyroidism. Bisphosphonates, particularly the aminobisphosphonates risedronate and alendronate, have been shown to protect patients on GCs from (further) bone loss to reduce vertebral fracture risk. Calcitonin may be of interest in situation where bisphosphonates are contraindicated or not applicable and in cases where acute pain due to vertebral fracture has to be manage. The intermittent administration of 1-34-parathormone may be an appealing treatment alternative, based on its documented anabolic effects on bone resulting from the reduction of osteoblastic apoptosis. Calcium and vitamin D should be a systematic adjunctive measure to any drug treatment for GIOP. Based on currently available evidence, fluoride, androgens, estrogens (opposed or unopposed) cannot be recommended for the prevention and treatment of GIOP. However, substitution of gonadal hormones may be indicated if GC-induced hypogonadism is present and leads to clinical symptoms. Data using the SERM raloxifene to treat or prevent GIOP are lacking, as are data using the promising bone anabolic agent strontium ranelate. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
This study investigated the anatomical consequences of a photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Retinae were examined 2 weeks, 1, 3, and 6 months after systemic IAA injection. The retinae were processed using standard histological methods to assess the gross morphology and topographical distribution of damage, and by immunohistochemistry to examine specific cell populations in the retina. Degeneration was restricted to the photoreceptors and was most common in the ventral retina and visual streak. In damaged regions, the outer nuclear layer was reduced in thickness or eliminated entirely, with a concomitant loss of immunoreactivity for rhodopsin. However, the magnitude of the effect varied between animals with the same IAA dose and survival time, suggesting individual differences in the bioavailability of the toxin. In all eyes, the inner retina remained intact, as judged by the thickness of the inner nuclear layer, and by the pattern of immunoreactivity for protein kinase C-alpha (rod bipolar cells) and calbindin D-28 (horizontal cells). Müller cell stalks became immunoreactive for glial fibrillary acidic protein (GFAP) even in IAA-treated retinae that had no signs of cell loss, indicating a response of the retina to the toxin. However, no marked hypertrophy or proliferation of Müller cells was observed with either GFAP or vimentin immunohistochemistry. Thus the selective, long lasting damage to the photoreceptors produced by this toxin did not lead to a reorganization of the surviving cells, at least with survival as long as 6 months, in contrast to the remodeling of the inner retina that is observed in inherited retinal degenerations such as retinitis pigmentosa and retinal injuries such as retinal detachment.
Resumo:
For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.
Resumo:
Since 2000, a surprisingly high number of macroscopical gonad alterations has been reported in whitefish (Coregonus spp.) from Lake Thun, Switzerland. This unique phenomenon is still unexplained and has received much public attention. As one possible trigger for these effects, the presence of persistent, bioaccumulative and toxic compounds acting as endocrine disruptors in the lake has been discussed. In this study, concentrations of selected persistent organic pollutants were examined in two morphs of whitefish from Lake Thun and their link to the observed abnormalities was investigated. Analyzed compound classes included polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, polybrominated diphenyl ethers and hexabromocyclododecanes. The target substances were identified in all samples and concentrations of the analyzed compounds were highly correlated among each other. These correlations show that the analyzed substances have the same distribution pattern throughout the lake and that uptake, accumulation and elimination processes are similar. Significant differences in contaminant levels within the samples existed between the two analyzed morphs of whitefish, most likely due to different age, food patterns and growth rate. No difference in contaminant levels was observed between fish with abnormal gonads and fish with normal gonads, suggesting no causal link between the investigated lipophilic organohalogen compounds present in fish and the observed gonad abnormalities in whitefish from Lake Thun. A comparison to existing data shows that concentrations in Lake Thun whitefish are at the lower bound of contaminant levels in whitefish from Swiss lakes or from European waters.
Resumo:
A high prevalence of gonad morphological variations has been observed in whitefish Coregonus lavaretus from Lake Thun (Switzerland). To clarify the role of endocrine disruption as a possible cause of the gonad alterations, whitefish were reared in a long-term laboratory experiment under exposure to 17 beta-estradiol (E2). Fish were fed from first-feeding until 3 yr of age at a daily rate of 0 (control), 0.5 or 50 microg E2 kg(-1) fish. E2 exposure resulted in a time- and concentration-dependent increase of prevalence and intensity of intersex gonads, i.e. gonads that macroscopically appeared as either testis or ovary but microscopically contained both male and female germ cells. Four types of intersex could be distinguished: Types 1 and 2 were composed of mainly male tissue, with Type 1 containing single oocytes and Type 2 displaying an ovary-like lamellar structure of the tissue. In Type 3, an increased percentage of the tissue was occupied by female germ cells, while in Type 4, the majority of the gonad tissue consisted of female germ cells. Chronic E2 exposure additionally resulted in a concentration-dependent shift of the sex ratio towards females, a reduced condition factor, retarded gonad growth together with delayed maturation of germ cells, and elevated levels of hepatic vitellogenin mRNA. However, Lake Thun-typical alterations of gonad morphology were not induced by chronic E2 exposure. The results provide evidence that estrogen-active compounds unlikely play a role in the etiology of gonad malformations in Lake Thun whitefish.
Resumo:
UV filters belong to a group of compounds that are used by humans and are present in municipal waste-waters, effluents from sewage treatment plants and surface waters. Current information regarding UV filters and their effects on fish is limited. In this study, the occurrence of three commonly used UV filters - 2-phenylbenzimidazole-5-sulfonic acid (PBSA), 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) and 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (benzophenone-4, BP-4) - in South Bohemia (Czech Republic) surface waters is presented. PBSA concentrations (up to 13μgL(-1)) were significantly greater than BP-3 or BP-4 concentrations (up to 620 and 390ngL(-1), respectively). On the basis of these results, PBSA was selected for use in a toxicity test utilizing the common model organism rainbow trout (Oncorhynchus mykiss). Fish were exposed to three concentrations of PBSA (1, 10 and 1000µgL(-1)) for 21 and 42 days. The PBSA concentrations in the fish plasma, liver and kidneys were elevated after 21 and 42 days of exposure. PBSA increased activity of certain P450 cytochromes. Exposure to PBSA also changed various biochemical parameters and enzyme activities in the fish plasma. However, no pathological changes were obvious in the liver or gonads.