730 resultados para Stereo-Photogrammetry
Resumo:
Geometric accuracy of a close-range photogrammetric system is assessed in this paper considering surface reconstruction with structured light as its main purpose. The system is based on an off-the-shelf digital camera and a pattern projector. The mathematical model for reconstruction is based on the parametric equation of the projected straight line combined with collinearity equations. A sequential approach for system calibration was developed and is presented. Results obtained from real data are also presented and discussed. Experiments with real data using a prototype have indicated 0.5mm of accuracy in height determination and 0.2mm in the XY plane considering an application where the object was 1630mm distant from the camera.
Resumo:
An approach using straight lines as features to solve the photogrammetric space resection problem is presented. An explicit mathematical model relating straight lines, in both object and image space, is used. Based on this model, Kalman Filtering is applied to solve the space resection problem. The recursive property of the filter is used in an iterative process which uses the sequentially estimated camera location parameters to feedback to the feature extraction process in the image. This feedback process leads to a gradual reduction of the image space for feature searching, and consequently eliminates the bottleneck due to the high computational cost of the image segmentation phase. It also enables feature extraction and the determination of feature correspondence in image and object space in an automatic way, i.e., without operator interference. Results obtained from simulated and real data show that highly accurate space resection parameters are obtained as well as a progressive processing time reduction. The obtained accuracy, the automatic correspondence process, and the short related processing time show that the proposed approach can be used in many real-time machine vision systems, making possible the implementation of applications not feasible until now.
Resumo:
This paper presents a method to recover 3D geometry of Lambertian surfaces by using multiple images taken from the same view point and with the scene illuminated from different positions. This approach differs from Stereo Photometry in that it considers the light source at a finite distance from the object and the perspective projection in image formation. The proposed model allows local solution and recovery of 3D coordinates, in addition to surface orientation. A procedure to calibrate the light sources is also presented. Results of the application of the algorithm to synthetic images are shown.
Resumo:
This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.
Resumo:
A morphological study of the budgerigar vas deferens was conducted to demonstrate the electron-microscopic features of its epithelial lining. The analysis showed that the vas deferens of the budgerigar was found to be of a tubular and serpentine structure, continuous with the epididymal region and lined with stereo ciliated pseudostratified epithelium, which contained folds projecting into the tubular lumen and a characteristic brush border. The epithelium consists of ciliated and non-ciliated cells with different electron densities. Ciliated cells were characterized by two morphologically distinct configurations: some cells were columnar and other ciliated cells were longer, thinner and dark. Non-ciliated cells showed apical cytoplasmic expansions, which projected into the tubular lumen as protrusions.
Resumo:
This paper presents the prototype of a low-cost terrestrial mobile mapping system (MMS) composed of a van, two digital video cameras, two GPS receivers, a notebook computer, and a sound frame synchronisation system. The imaging sensors are mounted as a stereo video camera on top of the vehicle together with the GPS antennae. The GPS receivers and the notebook computer are configured to record data referred to the vehicle position at a planned time interval. This position is subsequently transferred to the road images. This set of equipment and methods provide the opportunity to merge distinct techniques to make topographic maps and also to build georeferenced road image databases. Both vector maps and raster image databases, when integrated appropriately, can give spatial researchers and engineers a new technique whose application may realise better planning and analysis related to the road environment. The experimental results proved that the MMS developed at the São Paulo State University is an effective approach to inspecting road pavements, to map road marks and traffic signs, electric power poles, telephone booths, drain pipes, and many other applications important to people's safety and welfare. A small number of wad images have already been captured by the prototype as a consequence of its application in distinct projects. An efficient organisation of those images and the prompt access to them justify the need for building a georeferenced image database. By expanding it, both at the hardware and software levels, it is possible for engineers to analyse the entire road environment on their office computers.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
Several kinds of research in road extraction have been carried out in the last 6 years by the Photogrammetry and Computer Vision Research Group (GPF&VC - Grupo de Pesquisa em Fotogrametria e Visão Computacional). Several semi-automatic road extraction methodologies have been developed, including sequential and optimizatin techniques. The GP-F&VC has also been developing fully automatic methodologies for road extraction. This paper presents an overview of the GP-F&VC research in road extraction from digital images, along with examples of results obtained by the developed methodologies.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
The auto-radiography is a photographic method to registrate in sensitive emulsion the spatial distribution a rays emitted by radioisotopes of a sample or an object. The auto-radiography was applied to detect the presence of radioactive minerals in some samples of schists and gneisses from the Ticunzal Formation, Northeast Goiás State, aiming to implement the use of this technique in LABIDRO - Hydrochemistry and Isotopes Laboratory of the Department of Petrology and Metallogenesis, State University of São Paulo/Campus of Rio Claro.
Resumo:
The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)