935 resultados para Steam reforming of methanol
Resumo:
The acidic properties of nanolayered ZSM-5 zeolites synthesized with the aid of multiquaternary ammonium surfactants were investigated in detail. A substantial fraction of Al is present in highly dispersed form at extraframework positions indicative of the defective nature of the calcined nanolayered zeolites. Acidity characterization reveals that the Brønsted acid sites are similar in strength to those in bulk HZSM-5. Nanolayered zeolites contain a higher amount of Brønsted acid sites (BAS) at their external (mesopore) surface. Unilamellar zeolites have a higher concentration of external BA and silanol sites than multilamellar ones. The number of BAS in the nanolayered zeolites is considerably lower than the tetrahedral Al content, the difference increasing with nanolayer thickness. Except for one particular sample (nanolayered ZSM-5 synthesized from COH template), the total turnover of methanol normalized per BAS trends inversely with the concentration of BAS. There is no correlation with the concentration of external BAS. Catalyst deactivation due to coke mainly depends on the BAS concentration. A unilamellar ZSM-5 zeolite prepared using COH displayed substantially improved performance in terms of a much lower rate of coke deactivation in line with earlier data Choi et al. [10]. Since the acidic and textural properties of this zeolite did not differ significantly from the others, it remains to be determined why this zeolite performs so much better. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-β-d-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K. Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments. © 2011 American Chemical Society.
Resumo:
In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.
Resumo:
The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.
Resumo:
Dissertação mest., Engenharia Biológica, Universidade do Algarve, 2009
Resumo:
The effects of sample solvent composition and the injection volume, on the chromatographic peak profiles of two carbamate derivatives, methyl 2-benzimidazolecarbamate (MBC) and 3-butyl-2,4-dioxo[1,2-a]-s-triazinobenzimidazole (STB), were studied using reverse phase high performance liquid chromatograph. The study examined the effects of acetonitrile percentage in the sample solvent from 5 to 50%, effects of methanol percentage from 5 to 50%, effects of pH increase from 4.42 to 9.10, and effect of increasing buffer concentration from ° to 0.12M. The effects were studied at constant and increasing injection mass and at four injection volumes of 10, 50, 100 and 200 uL. The study demonstrated that the amount and the type of the organic solvents, the pH, and the buffer strength of the sample solution can have a pronounced effect on the peak heights, peak widths, and retention times of compounds analysed. MBC, which is capable of intramolecular hydrogen bonding and has no tendency to ionize, showed a predictable increase .in band broadening and a decrease in retention times at higher eluting strengths of the sample solvent. STB, which has a tendency to ionize or to strongly interact with the sample solvent, was influenced in various ways by the changes in ths sample solvent composition. The sample solvent effects became more pronounced as the injection volume increased and as the percentage of organic solvent in the sample solution became greater. The peak height increases for STB at increasing buffer concentrations became much more pronounced at higher analyte concentrations. It was shown that the widely accepted procedure of dissolving samples in the mobile phase does not yield the most efficient chromatograms. For that reason samples should be dissolved in the solutions with higher aqueous content than that of the mobile phase whenever possible. The results strongly recommend that all the samples and standards, regardless whether the standards are external or internal, be analysed at a constant sample composition and a constant injection volume.
Resumo:
Cette thèse concerne l’étude de phase de séparation de deux polymères thermosensibles connus-poly(N-isopropylacylamide) (PNIPAM) et poly(2-isopropyl-2-oxazoline) (PIPOZ). Parmi des études variées sur ces deux polymères, il y a encore deux parties de leurs propriétés thermiques inexplicites à être étudiées. Une partie concerne l’effet de consolvant de PNIPAM dans l’eau et un autre solvant hydromiscible. L’autre est l’effet de propriétés de groupes terminaux de chaînes sur la séparation de phase de PIPOZ. Pour ce faire, nous avons d’abord étudié l’effet de l’architecture de chaînes sur l’effet de cosolvant de PNIPAMs dans le mélange de méthanol/eau en utilisant un PNIPAM en étoile avec 4 branches et un PNIPAM cyclique comme modèles. Avec PNIPAM en étoile, l’adhérence de branches PNIPAM de à un cœur hydrophobique provoque une réduction de Tc (la température du point de turbidité) et une enthalpie plus faible de la transition de phase. En revanche, la Tc de PNIPAM en étoile dépend de la masse molaire de polymère. La coopérativité de déhydratation diminue pour PNIPAM en étoile et PNIPAM cyclique à cause de la limite topologique. Une étude sur l’influence de concentration en polymère sur l’effet de cosolvant de PNIPAM dans le mélange méthanol/eau a montré qu’une séparation de phase liquide-liquide macroscopique (MLLPS) a lieu pour une solution de PNIPAM dans le mélange méthanol/eau avec la fraction molaire de méthanol entre 0.127 et 0.421 et la concentration en PNIPAM est constante à 10 g.L-1. Après deux jours d’équilibration à température ambiante, la suspension turbide de PNIPAM dans le mélange méthanol/eau se sépare en deux phases dont une phase possède beaucoup plus de PNIPAM que l’autre. Un diagramme de phase qui montre la MLLPS pour le mélange PNIPAM/eau/méthanol a été établi à base de données expérimentales. La taille et la morphologie de gouttelettes dans la phase riche en polymère condensée dépendent de la fraction molaire de méthanol. Parce que la présence de méthanol influence la tension de surface des gouttelettes liquides, un équilibre lent de la séparation de phase pour PNIPAM/eau/méthanol système a été accéléré et une séparation de phase liquide-liquide macroscopique apparait. Afin d’étudier l’effet de groupes terminaux sur les propriétés de solution de PIPOZ, deux PIPOZs téléchéliques avec groupe perfluorodécanyle (FPIPOZ) ou groupe octadécyle (C18PIPOZ) comme extrémités de chaîne ont été synthétisés. Les valeurs de Tc des polymères téléchéliques ont beaucoup diminué par rapport à celle de PIPOZ. Des micelles stables se forment dans des solutions aqueuses de polymères téléchéliques. La micellization et la séparation de phase de ces polymères dans l’eau ont été étudiées. La séparation de phase de PIPOZs téléchéliques suit le mécanisme de MLLPS. Des différences en tailles de gouttelettes formées à l’intérieur de solutions de deux polymères ont été observées. Pour étudier profondément les différences dans le comportement d’association entre deux polymères téléchéliques, les intensités des signaux de polymères correspondants et les temps de relaxation T1, T2 ont été mesurés. Des valeurs de T2 de protons correspondants aux IPOZs sont plus hautes.
Resumo:
The catalyst compositions of the Zn1−xCOxFe2O4 (x= 0, 0.2, 0.5, 0.8 and 1.0) spiel series possessing ‘x’ values, x less than or equal to 0.5, are unique for selective N-monomethylation of aniline using methanol as the alkylating agent. Since dimethyl carbonate (DMC) is another potential non-toxic alkylating agent, alkylation of aniline was investigated over various Zn–Co ferrites using DMC as the alkylating agent. The merits and demerits of the two alkylating agents are compared. Catalytic activity followed a similar trend with respect to the composition of the ferrospinel systems. DMC is active at comparatively low temperature, where methanol shows only mild activity. However, on the selectivity basis, DMC as an alkylating agent could not compete with methanol, since the former gave appreciable amounts of N,N-dimethylaniline (NNDMA) even at low temperature where methanol gave nearly 99% N-methylaniline (NMA) selectivity. As in the case of methanol, DMC also did not give any C-alkylated products.
Resumo:
The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.
Resumo:
The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ni catalysts supported on gamma-Al(2)O(3) and Mg(Al)O were prepared with and without Rh as a promoter and tested in the reforming of methane in the presence of excess methane, simulating a model biogas. The effects of adding synthetic air on the methane conversion and the formation of carbon were assessed. The catalysts were characterized by X-ray spectroscopy (EDS), surface area (BET), X-ray diffraction (XRD), Temperature-programmed reduction (TPR), X-ray absorption near-edge structure (XANES) and XPD. The results showed that in catalysts without Rh, the Ni interacts strongly with the supports, showing high reduction temperatures in TPR tests. The addition of Rh increased the amount of reducible Ni and facilitated the reduction of the species interacting strongly with the support. In the catalytic tests, the samples promoted with Rh suffered higher carbon deposition. The in situ XPD suggested that on the support gamma-Al(2)O(3), the presence of Rh probably led to a segregation of Ni species with time on stream, leading to carbon deposition. On the support MgAlO, the presence of Rh improved the dispersion of Ni, by reducing the Ni(0) crystallite size, suggesting that in this case the carbon deposition was due to a favoring of CH(4) decomposition by Rh. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The antioxidant activity of methanol extracts from Passiflora edulis and Passiflora alata pulp, and P. edulis rinds, healthy or infected with the passion fruit woodiness virus (PWV), was investigated using the oxidant activities of the neutrophil and the neutrophil granule enzyme myeloperoxidase (MPO), both playing key roles in inflammation. The reactive oxygen species produced by stimulated neutrophils were evaluated by lucigenin-enhanced chemiluminescence (CL) and the activity of purified MPO was measured by SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection), a technique for studying the direct interaction of a compound with the enzyme. The rind extracts of P. edulis possessed higher and dose-dependent inhibitory effects on CL response and on the peroxidase activity of MPO than total pulp extracts from both passion fruit species. The quantification of isoorientin in the extracts showed a correlation with their antioxidant activity, suggesting the potential of P. edulis rinds as functional food or as a possible source of natural flavonoids. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present study is focused on the analysis of the three main governmental measures occurred in 2000-2006 in Russian defense industry: the creation of the holding structures, the establishing of the state monopoly in arms export, and creation of the United Aviation Construction Corporation (Ob¿edinennaya Aviastroitel¿naya Corporatziya), which was initiated by the President and Government of Russian Federation in 2006. The last project assumes the consolidation and joining of all producers of civil and military aviation into one united corporation in order to save the technological and productive potential of the sector after serious crisis in 1990-s. On the other hand, this project can be considered as one of the measures to establish state control and hierarchy in the defense industry. The current project tries to analyze the necessity and the possible impacts of restructuring processes. In order to perform such analysis, I need to observe the evolution of the sector, which involves the description of the restructuring and reforming of the industry since the disintegration of the Soviet Union. The current situation in aviation sector was shaped by number of reforms performed by Government of Russian Federation, which I describe in phases: conversion, privatization, decentralization, followed by evident desire of the state to establish control over some companies. Later on, I am trying to understand the reasons lying behind all reforms of 2000-2006 and the integration of the industry. I also try to predict which impacts on the companies it will have. The last part presents the main conclusions of the paper.
Resumo:
Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2
Resumo:
Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.