917 resultados para Splice Variants
Resumo:
Although apolipoprotein AN (apoA-V) polymorphisms have been consistently associated with fasting triglyceride (TG) levels, their impact on postprandial lipemia remains relatively unknown. In this study, we investigate the impact of two common apoA-V polymorphisms (-1131 T>C and S19W) and apoA-V haplotypes on fasting and postprandial lipid metabolism in adults in the United Kingdom (n = 259). Compared with the wild-type TT, apoA-V -1131 TC heterozygotes had 15% (P = 0.057) and 21% (P = 0.002) higher fasting TG and postprandial TG area under the curve (AUC), respectively. Significant (P = 0.038) and nearly significant (P = 0.057) gender X genotype interactions were observed for fasting TG and TG AUC, with a greater impact of genotype in males. Lower HDL-cholesterol was associated with the rare TC genotype (P = 0.047). Significant linkage disequilibrium was found between the apoA-V -1131 T>C and the apoC-III 3238 C>G variants, with univariate analysis indicating an impact of this apoC-III single nucleotide polymorphism (SNP) on TG AUC (P = 0.015). However, in linear regression analysis, a significant independent association with TG AUC (P = 0.007) was only evident for the apoA-V -1131 T>C SNP, indicating a greater relative importance of the apoA-V genotype.
Resumo:
During the stationary phase of Campylobacter jejuni NCTC 11351 viable numbers fluctuate in a characteristic fashion. After reaching the maximum cell count (ca. 2 X 10(9) CFU/ml) in early stationary phase (denoted phase 1), viable numbers subsequently decrease to about 10(6) CFU/ml after 48 h and then increase again to about 10(8) CFU/ml (denoted phase 2) before decreasing once more to a value intermediate between the previous maximum and minimum values. To investigate whether the increase in viable numbers following the initial decline was due to the emergence of a new strain with a growth advantage in stationary phase analogous to the 'GASP' phenotype described in Escherichia coli [Science 259 (1993) 1757], we conducted mixed culture experiments with cells from the original culture and antibiotic-resistant marked organisms isolated from the re-growth phase. In many experiments of this type, strains isolated from phase 2 failed to out-compete the original strain and we have thus been unable to demonstrate a convincing GASP phenotype. However, strains isolated from phase 2 showed a much lower rate of viability loss in early stationary phase and a small increase in resistance to aeration, peroxide challenge and heat, indicating that the emergent strain was different from the parent. These results support the view that dynamic population changes occur during the stationary phase of C jejuni that may play a role in the survival of this organism. (C) 2003 Published by Elsevier B.V.
Resumo:
Small mammals and stray cats were trapped in two areas of North Zealand, Denmark, and their blood cultured for hemotrophic bacteria. Bacterial isolates were recovered in pure culture and subjected to 16S rDNA gene sequencing. Bartonella species were isolated from five mammalian species: B. grahamii from Microtus agrestis (field vole) and Apodemus flavicollis (yellow-necked field mouse); B. taylorii from M. agrestis, A. flavicollis and A. sylvaticus (long-tailed field mouse); B. tribocorum from A. flavicollis; R vinsonii subsp. vinsonii from M. agrestis and A. sylvaticus; and B. birtlesii from Sorex vulgaris (common shrew). In addition, two variant types of B. henselae were identified: variant I was recovered from three specimens of A. sylvaticus, and B. henselae variant 11 from I I cats; in each case this was the only B. henselae variant found. No Bartonella species was isolated from Clethrionomys glareolus (bank vole) or Micromys minutus (harvest mouse). These results suggest that B. henselae occurs in two animal reservoirs in this region, one of variant I in A. sylvaticus, which may be transmitted between mice by the tick Ixodes ricinus, and another of variant 11 in cats, which may be transmitted by the cat flea (Ctenocephalides felis). To our knowledge, this is the first report of the occurrence of B. henselae and B. tribocorum in Apodemus mice.
Resumo:
Aims/hypothesis: Variants of the TCF7L2 gene predict the development of type 2 diabetes mellitus (T2DM). We investigated the associations between gene variants of TCF7L2 and clinical features of the metabolic syndrome (MetS) (an entity often preceeding T2DM), and their interaction with non-genetic factors, including plasma saturated fatty acids (SFA) concentration and insulin resistance (IR). Methods: Fasting lipid profiles, insulin sensitivity, insulin secretion, anthropometrics, blood pressure and 10 gene variations of the TCF7L2 gene were determined in 450 subjects with MetS. Results: Several single nucleotide polymorphisms (SNP) showed phenotypic associations independent of SFA or IR. Carriers of the rare T allele of rs7903146, and of three other SNPs in linkage disequilibrium with rs7903146, had lower blood pressure and insulin secretion. High IR and the presence of the T-allele of rs7903146 acted synergistically to define those with reduced insulin secretion. Carriers of the minor allele of rs290481 exhibited an altered lipid profile, with increased plasma levels of apolipoprotein B, non-esterified fatty acids, cholesterol and apolipoprotein B in triglyceride rich lipoproteins, and LDL cholesterol. Carriers of the minor allele of rs11196224 that had higher plasma SFA levels showed elevated procoagulant/proinflammatory biomarkers, impaired insulin secretion and increased IR, whereas carriers of the minor allele of rs17685538 with high plasma SFA levels exhibited higher blood pressure. Conclusions/interpretation: SNP in the TCF7L2 gene are associated with differences in insulin secretion, blood pressure, blood lipids and coagulation in MetS patients, and may be modulated by SFA in plasma or IR.
Resumo:
Several insulin receptor substrate-2 (IRS-2) polymorphisms have been studied in relation to insulin resistance and type 2 diabetes. To examine whether the genetic variability at the IRS-2 gene locus was associated with the degree of insulin resistance and plasma fatty acid levels in metabolic syndrome (MetS) subjects. Methods and results: Insulin sensitivity, insulin secretion, glucose effectiveness, plasma fatty acid composition and three IRS-2 tag-single nucleotide polymorphisms (SNPs) were determined in 452 MetS subjects. Among subjects with the lowest level of monounsaturated (MUFA) (below the median), the rs2289046 A/A genotype was associated with lower glucose effectiveness (p<0.038), higher fasting insulin concentrations (p<0.028) and higher HOMA IR (p<0.038) as compared to subjects carrying the minor G-allele (A/G and G/G). In contrast, among subjects with the highest level of MUFA (above the median), the A/A genotype was associated with lower fasting insulin concentrations and HOMA-IR, whereas individuals carrying the G allele and with the highest level of ω-3 polyunsaturated fatty acids (above the median) showed lower fasting insulin (p<0.01) and HOMA-IR (p<0.02) as compared with A/A subjects. Conclusion: The rs2289046 polymorphism at the IRS2 gene locus may influence insulin sensitivity by interacting with certain plasma fatty acids in MetS subjects.
Resumo:
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-To1C for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.
Resumo:
Following a pressure treatment of a clonal Staphylococcus aureus culture with 400 MPa for 30 min, piezotolerant variants were isolated. Among 21 randomly selected survivors, 9 were piezotolerant and all formed small colonies on several agar media. The majority of the isolates showed increased thermotolerance, impaired growth, and reduced antibiotic resistance compared to the wild type. However, several nonpiezotolerant isolates also demonstrated impaired growth and the small-colony phenotype. In agglutination tests for the detection of protein A and fibrinogen, the piezotolerant variants showed weaker agglutination reactions than the wild type and the other isolates. All variants also showed defective production of the typical S. aureus golden color, a characteristic which has previously been linked with virulence. They were also less able to invade intestinal epithelial cells than the wild type. These S. aureus variants showed phenotypic similarities to previously isolated Listeria monocytogenes piezotolerant mutants that contained mutations in ctsR. Because of these similarities, possible alterations in the ctsR hypermutable regions of the S. aureus variants were investigated through amplified fragment length polymorphism analysis. No mutations were identified, and subsequently we sequenced the ctsR and hrcA genes of three representative variants, finding no mutations. This work demonstrates that S. aureus probably possesses a strategy resulting in an abundance of multiple-stressresistant variants within clonal populations. This strategy, however, seems to involve genes and regulatory mechanisms different from those previously reported for L. monocytogenes. We are in the process of identifying these mechanisms.
Resumo:
The A1 variant protein of the β-casein family has been implicated in various disease states although much evidence is weak or contradictory. The primary objective was to measure, for the first time, the proportions of the key β-casein variant proteins in UK retail milk over the course of one year. In total, 55 samples of semi-skimmed milk were purchased from five supermarkets over the course of a year and the proportions of the A1, A2, B and C casein variant proteins were measured, using high resolution HPLC-MS. The results showed that β-casein in UK retail milk comprises approximately 0.58, 0.31, 0.07 and 0.03 A2, A1, B and C protein variants, respectively. The proportion of A2 is higher than some early studies would predict although the reasons for this and any implications for health are unclear
Resumo:
BACKGROUND/AIMS: Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets. METHODS: Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer-experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6-8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors--energy density, protein content (in grams or in % of total energy intake) and glycemic index--on these four adiposity phenotypes. RESULTS: We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = -0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = -0.0433 and rs10888390 (SNP N°3), p = 0.04, β = -0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (p(interaction) = 0.01, OR = 1.0526)--the risk of being a weight gainer increased with the percentage of proteins contained in the diet. CONCLUSION: CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.
Resumo:
Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow- up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Resumo:
Background Autism spectrum conditions (ASC) are a group of neurodevelopmental conditions characterized by difficulties in social interaction and communication alongside repetitive and stereotyped behaviours. ASC are heritable, and common genetic variants contribute substantial phenotypic variability. More than 600 genes have been implicated in ASC to date. However, a comprehensive investigation of candidate gene association studies in ASC is lacking. Methods In this study, we systematically reviewed the literature for association studies for 552 genes associated with ASC. We identified 58 common genetic variants in 27 genes that have been investigated in three or more independent cohorts and conducted a meta-analysis for 55 of these variants. We investigated publication bias and sensitivity and performed stratified analyses for a subset of these variants. Results We identified 15 variants nominally significant for the mean effect size, 8 of which had P values below a threshold of significance of 0.01. Of these 15 variants, 11 were re-investigated for effect sizes and significance in the larger Psychiatric Genomics Consortium dataset, and none of them were significant. Effect direction for 8 of the 11 variants were concordant between both the datasets, although the correlation between the effect sizes from the two datasets was poor and non-significant. Conclusions This is the first study to comprehensively examine common variants in candidate genes for ASC through meta-analysis. While for majority of the variants, the total sample size was above 500 cases and 500 controls, the total sample size was not large enough to accurately identify common variants that contribute to the aetiology of ASC.
Resumo:
Background Lifestyle factors such as diet and physical activity have been shown to modify the association between fat mass and obesity–associated (FTO) gene variants and metabolic traits in several populations; however, there are no gene-lifestyle interaction studies, to date, among Asian Indians living in India. In this study, we examined whether dietary factors and physical activity modified the association between two FTO single nucleotide polymorphisms (rs8050136 and rs11076023) (SNPs) and obesity traits and type 2 diabetes (T2D). Methods The study included 734 unrelated T2D and 884 normal glucose-tolerant (NGT) participants randomly selected from the urban component of the Chennai Urban Rural Epidemiology Study (CURES). Dietary intakes were assessed using a validated interviewer administered semi-quantitative food frequency questionnaire (FFQ). Physical activity was based upon the self-report. Interaction analyses were performed by including the interaction terms in the linear/logistic regression model. Results There was a significant interaction between SNP rs8050136 and carbohydrate intake (% energy) (Pinteraction = 0.04), where the ‘A’ allele carriers had 2.46 times increased risk of obesity than those with ‘CC’ genotype (P = 3.0 × 10−5) among individuals in the highest tertile of carbohydrate intake (% energy, 71 %). A significant interaction was also observed between SNP rs11076023 and dietary fibre intake (Pinteraction = 0.0008), where individuals with AA genotype who are in the 3rd tertile of dietary fibre intake had 1.62 cm lower waist circumference than those with ‘T’ allele carriers (P = 0.02). Furthermore, among those who were physically inactive, the ‘A’ allele carriers of the SNP rs8050136 had 1.89 times increased risk of obesity than those with ‘CC’ genotype (P = 4.0 × 10−5). Conclusions This is the first study to provide evidence for a gene-diet and gene-physical activity interaction on obesity and T2D in an Asian Indian population. Our findings suggest that the association between FTO SNPs and obesity might be influenced by carbohydrate and dietary fibre intake and physical inactivity. Further understanding of how FTO gene influences obesity and T2D through dietary and exercise interventions is warranted to advance the development of behavioral intervention and personalised lifestyle strategies, which could reduce the risk of metabolic diseases in this Asian Indian population.