965 resultados para Spira, Francesco, -1548.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrasmoothness of diamond-like carbon coatings is explained by an atomistic/continuum multiscale model. At the atomic scale, carbon ion impacts induce downhill currents in the top layer of a growing film. At the continuum scale, these currents cause a rapid smoothing of initially rough substrates by erosion of hills into neighboring hollows. The predicted surface evolution is in excellent agreement with atomic force microscopy measurements. This mechanism is general, as shown by similar simulations for amorphous silicon. It explains the recently reported smoothing of multilayers and amorphous transition metal oxide films and underlines the general importance of impact-induced downhill currents for ion deposition, polishing, and nanopattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

田间释放烟蚜茧蜂能很好地抑制烟蚜种群数量的增长。以常规施药烟田、不施药烟田作对照 ,在前期其对烟蚜的相对防效分别为 8.4%和 5 2 .8% ,中期为 6 4.0 %~ 79.0 %和 6 8.6 %~ 82 .3% ,后期为 93.0 %和 93.5 %。放蜂田烟蚜茧蜂成虫喜欢在烟株中下部叶片活动 ,1 3∶0 0~ 1 4∶0 0是其在烟株中下部活动的高峰期。烟蚜茧蜂对烟株下部叶片上烟蚜的较强选择性与烟蚜密度无关 ,下部叶片上的僵蚜数量均显著高于中、上和顶部。 1 3∶0 0~ 1 4∶0 0利用生物农药对烟株上部叶片上的烟蚜进行防治 ,既是烟蚜茧蜂与生物农药集成组装的切合点 ,又是保护利用田间烟蚜茧蜂的有效措施。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive a random-coding upper bound on the average probability of error of joint source-channel coding that recovers Csiszár's error exponent when used with product distributions over the channel inputs. Our proof technique for the error probability analysis employs a code construction for which source messages are assigned to subsets and codewords are generated with a distribution that depends on the subset. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过土壤添加硒盆栽试验,研究了黄棕壤不同浓度Se对水稻生物量、叶绿素含量、抗氧化酶系统的影响.结果表明,低浓度Se(<8mg·kg-1)对水稻根和地上生物量、叶绿素a含量、叶绿素a/b有促进作用,并整体提高了作物抗氧化酶系统,使MDA下降,SOD、CAT、POD、GSH Px活性相应提高.而高浓度Se(>16mg·kg-1)对水稻根和地上生物量、叶绿素a含量、叶绿素a/b有明显的抑制作用,对抗氧化酶系统产生胁迫效应,使GSH Px明显上升,MDA上升,SOD、CAT、POD酶活性明显下降.各项生理指标与土

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utilisation of thin film technology to develop film bulk acoustic resonators (FBARs) and solidly mounted resonators (SMRs), offers great potential to outperform the sensitivity and minimum detection limit of gravimetric sensors. Up to now, the choice between FBARs and SMRs depends primarily on the users' ability to design and fabricate Bragg reflectors and/or membranes, because neither of these two types of resonators has been demonstrated to be superior to the other. In the work reported here, it is shown that identically designed FBARs and SMRs resonating at the same frequency exhibit different responsitivities, Rm, to mass loadings, being the FBARs more responsive than the SMRs. For the specific device design and resonant frequency (∼2 GHz) of the resonators presented, FBARs' mass responsitivity is ∼20% greater than that of SMRs, and although this value should not be taken as universal for all possible device designs, it clearly indicates that FBAR devices should be favoured over SMRs in gravimetric sensing applications. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the feasibility of transducing molecular-recognition events into a measurable potentiometric signal. It is shown for the first time that biorecognition of acetylcholine (ACh) can be translated to conformational changes in the enzyme, acetylcholine-esterase (AChE), which in turn induces a measurable change in surface potential. Our results show that a highly sensitive detector for ACh can be obtained by the dilute assembly of AChE on a floating gate derived field effect transistor (FG-FET). A wide concentration range response is observed for ACh (10(-2)-10(-9)M) and for the inhibitor carbamylcholine CCh (10(-6)-10(-11)M). These enhanced sensitivities are modeled theoretically and explained by the combined response of the device to local pH changes and molecular dipole variations due to the enzyme-substrate recognition event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly sensitive biosensor for detection of acetylcholine (ACh) and competitive acetylcholinesterase (AChE) inhibitor, eserine, is investigated. Peculiar microelectronic configuration of an ion-sensitive field-effect transistor (ISFET) in addition to a right choice of the pH-transducing nanolayers allows recording a response of the enzyme-modified ISFET (EnFET) to a wide range of ACh concentrations. We demonstrate a remarkable improvement of at least three orders of magnitude in dose response to ACh. Described bioelectronic system reveals clear response, when the catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, competitive inhibitor of AChE. ©2007 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the variety of applications for biosensors one of the exciting frontiers is to utilize those devices as post-synaptic sensing elements in chemical coupling between neurons and solid-state systems. The first necessary step to attain this challenge is to realize highly efficient detector for neurotransmitter acetylcholine (ACh). Herein, we demonstrate that the combination of floating gate configuration of ion-sensitive field effect transistor (ISFET) together with diluted covalent anchoring of enzyme acetylcholinesterase (AChE) onto device sensing area reveals a remarkable improvement of a four orders of magnitude in dose response to ACh. This high range sensitivity in addition to the benefits of peculiar microelectronic design show, that the presented hybrid provides a competent platform for assembly of artificial chemical synapse junction. Furthermore, our system exhibits clear response to eserine, a competitive inhibitor of AChE, and therefore it can be implemented as an effective sensor of pharmacological reagents, organophosphates, and nerve gases as well. © 2007 Materials Research Society.