961 resultados para Spectral projected gradient method
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Spectral width and pulse duration tuning in Yb+ modelocked fiber laser with birefringent Lyot filter
Resumo:
A method of pulse duration and spectral width control in all-fiber Ytterbium modelocked laser with SWCNT is presented. It is shown that PM-fiber can also serve as a spectrally selective filter. © 2012 OSA.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Changing Bacterial Growth Efficiencies across a Natural Nutrient Gradient in an Oligotrophic Estuary
Resumo:
Recent studies have characterized coastal estuarine systems as important components of the global carbon cycle. This study investigated carbon cycling through the microbial loop of Florida Bay by use of bacterial growth efficiency calculations. Bacterial production, bacterial respiration, and other environmental parameters were measured at three sites located along a historic phosphorus-limitation gradient in Florida Bay and compared to a relatively nutrient enriched site in Biscayne Bay. A new method for measuring bacterial respiration in oligotrophic waters involving tracing respiration of 13C-glucose was developed. The results of the study indicate that 13C tracer assays may provide a better means of measuring bacterial respiration in low nutrient environments than traditional dissolved oxygen consumption-based methods due to strong correlations between incubation length and δ13C values. Results also suggest that overall bacterial growth efficiency may be lower at the most nutrient limited sites.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
Resumo:
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.
Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.
Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.
Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.
Resumo:
Background For decades film has proved to be a powerful form of communication. Whether produced as entertainment, art or documentary, films have the capacity to inform and move us. Films are a highly attractive teaching instrument and an appropriate teaching method in health education. It is a valuable tool for studying situations most transcendental to human beings such as pain, disease and death. Objectives The objectives were to determine how this helps students engage with their role as health care professionals; to determine how they view the personal experience of illness, disease, disability or death; and to determine how this may impact upon their provision of patient care. Design, Setting and Participants The project was underpinned by the film selection determined by considerate review, intensive scrutiny, contemplation and discourse by the research team. 7 films were selected, ranging from animation; foreign, documentary, biopic and Hollywood drama. Each film was shown discretely, in an acoustic lecture theatre projected onto a large screen to pre-registration student nurses (adult, child and mental health) across each year of study from different cohorts (n = 49). Method A mixed qualitative method approach consisted of audio-recorded 5-minute reactions post film screening; coded questionnaires; and focus group. Findings were drawn from the impact of the films through thematic analysis of data sets and subjective text condensation categorised as: new insights looking through patient eyes; evoking emotion in student nurses; spiritual care; going to the moves to learn about the patient experience; self discovery through films; using films to link theory to practice. Results Deeper learning through film as a powerful medium was identified in meeting the objectives of the study. Integration of film into pre registration curriculum, pedagogy, teaching and learning is recommended. Conclusion The teaching potential of film stems from the visual process linked to human emotion and experience. Its impact has the power to not only help in learning the values that underpin nursing, but also for respecting the patient experience of disease, disability, death and its reality.
Resumo:
Dans ce projet de recherche, le dépôt des couches minces de carbone amorphe (généralement connu sous le nom de DLC pour Diamond-Like Carbon en anglais) par un procédé de dépôt chimique en phase vapeur assisté par plasma (ou PECVD pour Plasma Enhanced Chemical Vapor deposition en anglais) a été étudié en utilisant la Spectroscopie d’Émission Optique (OES) et l’analyse partielle par régression des moindres carrés (PLSR). L’objectif de ce mémoire est d’établir un modèle statistique pour prévoir les propriétés des revêtements DLC selon les paramètres du procédé de déposition ou selon les données acquises par OES. Deux séries d’analyse PLSR ont été réalisées. La première examine la corrélation entre les paramètres du procédé et les caractéristiques du plasma pour obtenir une meilleure compréhension du processus de dépôt. La deuxième série montre le potentiel de la technique d’OES comme outil de surveillance du procédé et de prédiction des propriétés de la couche déposée. Les résultats montrent que la prédiction des propriétés des revêtements DLC qui était possible jusqu’à maintenant en se basant sur les paramètres du procédé (la pression, la puissance, et le mode du plasma), serait envisageable désormais grâce aux informations obtenues par OES du plasma (particulièrement les indices qui sont reliées aux concentrations des espèces dans le plasma). En effet, les données obtenues par OES peuvent être utilisées pour surveiller directement le processus de dépôt plutôt que faire une étude complète de l’effet des paramètres du processus, ceux-ci étant strictement reliés au réacteur plasma et étant variables d’un laboratoire à l’autre. La perspective de l’application d’un modèle PLSR intégrant les données de l’OES est aussi démontrée dans cette recherche afin d’élaborer et surveiller un dépôt avec une structure graduelle.
Resumo:
Introduction Compounds exhibiting antioxidant activity have received much interest in the food industry because of their potential health benefits. Carotenoids such as lycopene, which in the human diet mainly derives from tomatoes (Solanum lycopersicum), have attracted much attention in this aspect and the study of their extraction, processing and storage procedures is of importance. Optical techniques potentially offer advantageous non-invasive and specific methods to monitor them. Objectives To obtain both fluorescence and Raman information to ascertain if ultrasound assisted extraction from tomato pulp has a detrimental effect on lycopene. Method Use of time-resolved fluorescence spectroscopy to monitor carotenoids in a hexane extract obtained from tomato pulp with application of ultrasound treatment (583 kHz). The resultant spectra were a combination of scattering and fluorescence. Because of their different timescales, decay associated spectra could be used to separate fluorescence and Raman information. This simultaneous acquisition of two complementary techniques was coupled with a very high time-resolution fluorescence lifetime measurement of the lycopene. Results Spectroscopic data showed the presence of phytofluene and chlorophyll in addition to lycopene in the tomato extract. The time-resolved spectral measurement containing both fluorescence and Raman data, coupled with high resolution time-resolved measurements, where a lifetime of ~5 ps was attributed to lycopene, indicated lycopene appeared unaltered by ultrasound treatment. Detrimental changes were, however, observed in both chlorophyll and phytofluene contributions. Conclusion Extracted lycopene appeared unaffected by ultrasound treatment, while other constituents (chlorophyll and phytofluene) were degraded.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.