985 resultados para Spectral methods
Resumo:
Background. Heart transplantation (OHT) has traditionally been contraindicated in the presence of severe pulmonary hypertension (PH), as detected by right heart catheterization. Noninvasive methods are still not reliably accurate to make this evaluation. Objectives. Determine the efficacy of echo Doppler analysis for the diagnosis of severe PH. Methods. One hundred thirty patients (mean age = 42 +/- 15 years, 82 men) showed severe left ventricular dysfunction (mean ejection fraction = 29 +/- 12%; functional class III-IV). We excluded patients with atrial fibrillation, heart failure secondary to congenital disease, and valvulopathy. The pulmonary parameters defined as severe PH were: systolic pulmonary artery pressure (sPAP) >= 60 mm Hg; a mean transpulmonary gradient >= 15; or pulmonary vascular resistance >= 5 Wood units. Patients underwent a right heart catheterization using a Swan-Ganz catheter to measure hemodynamic parameters and to noninvasively estimate right-sided pressures from spectral Doppler recordings of tricuspid regurgitation velocity (right ventricular systolic pressure [RVsP]). A Pearson correlation of sPAP was obtained with RVsP by; the sensitivity of RVsP for the diagnosis of PH was determined by a receiver operating characteristic (ROC) curve. Results. A good correlation between sPAP and RVsP was obtained by Pearson correlation analysis (r = 0.64; 95% confidence interval [CI] 0.50-0.75; P < .001). The ROC curve analysis showed a sensitivity of 100%, a specificity of 37.2%, (95% CI 0.69-0.83, P < .0001) of a RVsP < 45 mm Hg (cutoff) on the exclusion of severe PH. Conclusions. The cutoff of RVsP < 45 mm Hg, on noninvasive echo Doppler evaluation of PH is an efficient method to replace invasive heart catheterization in OHT candidates.
Resumo:
Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
BACKGROUND CONTEXT: The vertebral spine angle in the frontal plane is an important parameter in the assessment of scoliosis and may be obtained from panoramic X-ray images. Technological advances have allowed for an increased use of digital X-ray images in clinical practice. PURPOSE: In this context, the objective of this study is to assess the reliability of computer-assisted Cobb angle measurements taken from digital X-ray images. STUDY DESIGN/SETTING: Clinical investigation quantifying scoliotic deformity with Cobb method to evaluate the intra- and interobserver variability using manual and digital techniques. PATIENT SAMPLE: Forty-nine patients diagnosed with idiopathic scoliosis were chosen based on convenience, without predilection for gender, age, type, location, or magnitude of the curvature. OUTCOME MEASURES: Images were examined to evaluate Cobb angle variability, end plate selection, as well as intra- and interobserver errors. METHODS: Specific software was developed to digitally reproduce the Cobb method and calculate semiautomatically the degree of scoliotic deformity. During the study, three observers estimated the Cobb angle using both the digital and the traditional manual methods. RESULTS: The results showed that Cobb angle measurements may be reproduced in the computer as reliably as with the traditional manual method, in similar conditions to those found in clinical practice. CONCLUSIONS: The computer-assisted method (digital method) is clinically advantageous and appropriate to assess the scoliotic curvature in the frontal plane using Cobb method. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Chagas` disease caused by Trypanosoma cruzi is endemic in Latin America. T. cruzi presents heterogeneous populations and comprises two main genetic lineages, named T. cruzi I and T. cruzi II. Diagnosis in the chronic phase is based on conventional serological tests, including indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assay (ELISA), and diagnosis in the acute phase based on parasitological methods, including hemoculture. The objective of this study was to evaluate the diagnostic procedures of Chagas` disease in adult patients in the chronic phase by using a PCR assay and conventional serological tests, including TESA-blot as the gold standard. Samples were obtained from 240 clinical chronic chagasic patients. The sensitivities, compared to that of TESA-blot, were 70% for PCR using the kinetoplast region, 75% for PCR using the nuclear repetitive region, 99% for IIF, and 95% for ELISA. According to the serological tests results, we recommend that researchers assess the reliability and sensitivity of the commercial kit Chagatest ELISA recombinant, version 3.0 (Chagatest Rec v3.0; Wiener Lab, Rosario, Argentina), due to the lack of sensitivity. Based on our analysis, we concluded that PCR cannot be validated as a conventional diagnostic technique for Chagas` disease. These data have been corroborated by low levels of concordance with serology test results. It is recommended that PCR be used only for alternative diagnostic support. Using the nuclear repetitive region of T. cruzi, PCR could also be applicable for monitoring patients receiving etiologic treatment.
Resumo:
Human leukocyte antigen (HLA) haplotypes are frequently evaluated for population history inferences and association studies. However, the available typing techniques for the main HLA loci usually do not allow the determination of the allele phase and the constitution of a haplotype, which may be obtained by a very time-consuming and expensive family-based segregation study. Without the family-based study, computational inference by probabilistic models is necessary to obtain haplotypes. Several authors have used the expectation-maximization (EM) algorithm to determine HLA haplotypes, but high levels of erroneous inferences are expected because of the genetic distance among the main HLA loci and the presence of several recombination hotspots. In order to evaluate the efficiency of computational inference methods, 763 unrelated individuals stratified into three different datasets had their haplotypes manually defined in a family-based study of HLA-A, -B, -DRB1 and -DQB1 segregation, and these haplotypes were compared with the data obtained by the following three methods: the Expectation-Maximization (EM) and Excoffier-Laval-Balding (ELB) algorithms using the arlequin 3.11 software, and the PHASE method. When comparing the methods, we observed that all algorithms showed a poor performance for haplotype reconstruction with distant loci, estimating incorrect haplotypes for 38%-57% of the samples considering all algorithms and datasets. We suggest that computational haplotype inferences involving low-resolution HLA-A, HLA-B, HLA-DRB1 and HLA-DQB1 haplotypes should be considered with caution.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.