896 resultados para Spatial Decision Support System
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Spatial analysis and social network analysis typically take into consideration social processes in specific contexts of geographical or network space. The research in political science increasingly strives to model heterogeneity and spatial dependence. To better understand and geographically model the relationship between “non-political” events, streaming data from social networks, and political climate was the primary objective of the current study. Geographic information systems (GIS) are useful tools in the organization and analysis of streaming data from social networks. In this study, geographical and statistical analysis were combined in order to define the temporal and spatial nature of the data eminating from the popular social network Twitter during the 2014 FIFA World Cup. The study spans the entire globe because Twitter’s geotagging function, the fundamental data that makes this study possible, is not limited to a geographic area. By examining the public reactions to an inherenlty non-political event, this study serves to illuminate broader questions about social behavior and spatial dependence. From a practical perspective, the analyses demonstrate how the discussion of political topics fluсtuate according to football matches. Tableau and Rapidminer, in addition to a set basic statistical methods, were applied to find patterns in the social behavior in space and time in different geographic regions. It was found some insight into the relationship between an ostensibly non-political event – the World Cup - and public opinion transmitted by social media. The methodology could serve as a prototype for future studies and guide policy makers in governmental and non-governmental organizations in gauging the public opinion in certain geographic locations.
Resumo:
Information security is concerned with the protection of information, which can be stored, processed or transmitted within critical information systems of the organizations, against loss of confidentiality, integrity or availability. Protection measures to prevent these problems result through the implementation of controls at several dimensions: technical, administrative or physical. A vital objective for military organizations is to ensure superiority in contexts of information warfare and competitive intelligence. Therefore, the problem of information security in military organizations has been a topic of intensive work at both national and transnational levels, and extensive conceptual and standardization work is being produced. A current effort is therefore to develop automated decision support systems to assist military decision makers, at different levels in the command chain, to provide suitable control measures that can effectively deal with potential attacks and, at the same time, prevent, detect and contain vulnerabilities targeted at their information systems. The concept and processes of the Case-Based Reasoning (CBR) methodology outstandingly resembles classical military processes and doctrine, in particular the analysis of “lessons learned” and definition of “modes of action”. Therefore, the present paper addresses the modeling and design of a CBR system with two key objectives: to support an effective response in context of information security for military organizations; to allow for scenario planning and analysis for training and auditing processes.
Resumo:
Kidney renal failure means that one’s kidney have unexpectedly stopped functioning, i.e., once chronic disease is exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapid deterioration of the renal function, but is often reversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis.The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow one to consider incomplete, unknown, and even contradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.
Resumo:
Kidney renal failure means that one’s kidney have unexpectedlystoppedfunctioning,i.e.,oncechronicdiseaseis exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapiddeteriorationoftherenalfunction,butisoftenreversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis. The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow onetoconsiderincomplete,unknown,and evencontradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.
Resumo:
Parchment stands for a multifaceted material made from animal skin, which has been used for centuries as a writing support or as bookbinding. Due to the historic value of objects made of parchment, understanding their degradation and their condition is of utmost importance to archives, libraries and museums, i.e., the assessment of parchment degradation is mandatory, although it is hard to do with traditional methodologies and tools for problem solving. Hence, in this work we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate Parchment Degradation and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.
Resumo:
With the implementation of Information and Communication Technologies in the health sector, it became possible the existence of an electronic record of information for patients, enabling the storage and the availability of their information in databases. However, without the implementation of a Business Intelligence (BI) system, this information has no value. Thus, the major motivation of this paper is to create a decision support system that allows the transformation of information into knowledge, giving usability to the stored data. The particular case addressed in this chapter is the Centro Materno Infantil do Norte, in particular the Voluntary Interruption of Pregnancy unit. With the creation of a BI system for this module, it is possible to design an interoperable, pervasive and real-time platform to support the decision-making process of health professionals, based on cases that occurred. Furthermore, this platform enables the automation of the process for obtaining key performance indicators that are presented annually by this health institution. In this chapter, the BI system implemented in the VIP unity in CMIN, some of the KPIs evaluated as well as the benefits of this implementation are presented.
Resumo:
An unsuitable patient flow as well as prolonged waiting lists in the emergency room of a maternity unit, regarding gynecology and obstetrics care, can affect the mother and child’s health, leading to adverse events and consequences regarding their safety and satisfaction. Predicting the patients’ waiting time in the emergency room is a means to avoid this problem. This study aims to predict the pre-triage waiting time in the emergency care of gynecology and obstetrics of Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto, situated in the north of Portugal. Data mining techniques were induced using information collected from the information systems and technologies available in CMIN. The models developed presented good results reaching accuracy and specificity values of approximately 74% and 94%, respectively. Additionally, the number of patients and triage professionals working in the emergency room, as well as some temporal variables were identified as direct enhancers to the pre-triage waiting time. The imp lementation of the attained knowledge in the decision support system and business intelligence platform, deployed in CMIN, leads to the optimization of the patient flow through the emergency room and improving the quality of services.
Resumo:
Los servicios de salud son sistemas muy complejos, pero de alta importancia, especialmente en algunos momentos críticos, en todo el mundo. Los departamentos de urgencias pueden ser una de las áreas más dinámicas y cambiables de todos los servicios de salud y a la vez más vulnerables a dichos cambios. La mejora de esos departamentos se puede considerar uno de los grandes retos que tiene cualquier administrador de un hospital, y la simulación provee una manera de examinar este sistema tan complejo sin poner en peligro los pacientes que son atendidos. El objetivo de este trabajo ha sido el modelado de un departamento de urgencias y el desarrollo de un simulador que implementa este modelo con la finalidad de explorar el comportamiento y las características de dicho servicio de urgencias. El uso del simulador ofrece la posibilidad de visualizar el comportamiento del modelo con diferentes parámetros y servirá como núcleo de un sistema de ayuda a la toma de decisiones que pueda ser usado en departamentos de urgencias. El modelo se ha desarrollado con técnicas de modelado basado en agentes (ABM) que permiten crear modelos funcionalmente más próximos a la realidad que los modelos de colas o de dinámicas de sistemas, al permitir la inclusión de la singularidad que implica el modelado a nivel de las personas. Los agentes del modelo presentado, descritos internamente como máquinas de estados, representan a todo el personal del departamento de urgencias y los pacientes que usan este servicio. Un análisis del modelo a través de su implementación en el simulador muestra que el sistema se comporta de manera semejante a un departamento de urgencias real.
Resumo:
OBJECTIVE. The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. MATERIALS AND METHODS. Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. RESULTS. Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. CONCLUSIONS. The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols.
Resumo:
Reaaliaikainen, ennakoiva kunnonvalvonta on erittäin tärkeä osa modernin tehtaan tai tuotantolinjan toimintaa. Diplomityön teettäjä haluaa edelleen kehittää akustiseen emissioon perustuvaa kunnonvalvonta järjestelmäänsä, jotta siitä olisi enemmän hyötyä asiakkaalle. Diplomityö sisältää johdannonakustiseen emissioon ja akustisiin emissio sensoreihin. Työn tavoitteena oli kehittää päätöksentekojärjestelmä, jota käytettäisiin työn teettäjän valmistamien sensoreiden antaman tiedon automatisoituun analysointiin. Työssä on vertailtu kolmea eri ohjelmistotoimittajaa ja heidän ohjelmiaan, ja tehty ehdotus hankittavasta ohjelmistosta. Lisäksi työssä on kehitetty ohjeita, joiden avulla ohjelmisto ohjelmoidaan tuottamaan reaaliaikaista tietoa ja huolto-ohjeita sen käyttäjille. Lisäksi työssä annetaan ehdotuksia kunnonvalvonta- ja päätöksentekojärjestelmän edelleen kehittämiseen.