985 resultados para Soil chemical analysis
Resumo:
The annual litter fall production and the concentrations of macronutrients of four leguminous tree species were evaluated. The experiment was installed in a distrophic red yellow latosol (Oxisol), derivative of the Bauru sandstone group. The studied species were: Leucaena leucocephala. Acacia melanoxylon, L. diversifolia and Mimosa scabrella. The experimental design was randomized blocks, with four treatments (species) and four replications. The litter fall was collected in boxes measuring 50×50×10 cm, two boxes by treatment in each block. The material was collected monthly and dried, weighed and chemically analyzed. The litter fall deposition occurred in the following order: M. scabrella (7,051 kg ha -1 ano -1), A. melanoxylon (2,789 kg ha -1 ano -1), L. diversifolia (1,576 kg ha -1 ano -1) and L. leucocephala (1,389 kg ha -1 ano -1). The content of nutrients obeyed the following order: N>Ca>K>Mg>P>S, with the exception of L. leucocephala that presented a bigger content of S in relation to the P.
Resumo:
The interaction between humic substances and poly(o-ethoxyaniline) (POEA), a conducting polymer, was investigated for both solution and self-assembled films. The results have shown that the humic substances induce a doping of POEA by protonation, as indicated by UV-Vis and Raman spectroscopies. The atomic force microscopy (AFM) studies on the self-assembled films have shown that the average roughness of the polymer film has increased after exposing it to humic substances (fulvic and humic acids), consistent with the interaction between POEA and humic substances. However, this change in morphology is reversible by washing the films with water in agreement with the electrical data allowing using this system in sensor applications. Here, the sensor formed by an array of different sensing units was able to detect and distinguish humic substances in aqueous solution, as shown by multivariate analysis (principal component analysis). The motivation to detect humic substance comes due to its importance in terms of quality control of water or soil. ©2005 Sociedade Brasileira de Química.
Resumo:
A site investigation program was carried out to detect salt-water intrusions in a shallow sedimentary aquifer based on electrical resistivity measurements. The site is located close to Paranaguá harbor, in the Paraná State, Brasil. At this site, high chloride concentration contaminated shallow water wells used to supply water for local industries. The site investigation program included a fieldwork, dipole-dipole electrical profiling, resistivity piezocone tests, physical-chemical analysis of sampled water and interpretation of borehole logs. The resistivity piezocone tests provided two simultaneous information; the soil stratigraphy at a very detailed level and a quasi-continuous resistivity profile. Both information adequately complemented dipole-dipole electrical profiling test data. The integration of all test data allowed identifying the contaminated areas as well as guided the location of new water wells to be installed in this area.
Resumo:
The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.
Resumo:
This work studied alterations of physical properties of a distroferric red nitosol due to millet (Pennisetum americanum) covering, with or without liming, in a no-tillage system during the agricultural years of 1999/2000 and 2000/2001, using soybean and corn as culture succession. 6m×10m plots, with and without millet as vegetal covering, received only one initial superficial application of limestone, 3.1 t ha-1 in the first half of each plot in order to obtain 70% base saturation (V), after the desiccation of the millet. Some physical properties as soil density, aggregate stability, > 2 mm aggregate proportion, macro and micro porosity were analyzed whereas the chemical analysis determined Ca and Mg macro nutrients, organic matter, soil pH and H+Al. Millet vegetal residues and surface liming did not alter soil density nor the average weight diameter (AWD), > 2 mm aggregate, soil macro porosity and organic matter content, twenty-four months after the no-tillage system implantation for studied experimental conditions. Soil micro porosity was significantly affected in layers deeper than 0.20 m, in treatment with millet and limestone. Calcium, magnesium and H + Al contents and the soil pH values suffered significant alterations in superficial layer, between 0-0.05 m.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this work was to assess the spatial variability of the chemical attributes of two coffee areas, managed in conventional and organic crop systems, and to calculate the percent of variation between them. In each area, a 40-point-mesh was sampled at 0-0.10 m and 0.10-0.20 m layers, within the crown projection, for pH, SB, K, P, Ca and Mg analysis. The data were analyzed through descriptive statistics and geostatistics. From the soil chemical attributes map, the percent of variation between the systems' chemical attributes was determined by GIS algebraic operations. The results show that the soil chemical attributes present a spatial dependence in both systems and layers. Analysis of the soil chemical attributes showed less spatial variability in the organic system, in relation to the conventional, indicating homogeneous zones for different fertilizer applications. The percent of variation of the chemical attributes in the conventional system, in relation to the organic, at 0-0.10 m and 0.10-0.20m layers are 54.80% and 35.61%, respectively.
Resumo:
Although there are recommendations for the fertilization of commercial squash crops, studies which connect the effect of topdressing potassium fertilization and yield are still rare. Thus, this study aimed at evaluating topdressing potassium doses on squash (Mirian hybrid) yield, in an experimental farm of the Universidade Estadual Paulista Júlio de Mesquita Filho, in São Manuel, São Paulo State, Brazil. The experimental design was randomized blocks, with five treatments (0.0 kg ha-1, 50.0 kg ha-1, 100.0 kg ha-1, 200.0 kg ha-1 and 400.0 kg ha-1 of K2O) and six replications. Plant growth parameters, yield and fruit quality were evaluated. After harvesting, plant (leaves + stem) and soil macronutrients were submitted to chemical analysis and data to variance and regression analysis. It was concluded that the highest yield resulted from the topdressing dose of 199.0 kg ha-1 of K2O. A reduction in calcium and magnesium contents in the plant canopy and a higher K+ content in the soil were observed for increasing K2O levels.
Resumo:
Titanium alloys of Ti-Si-B system were manufactured by blended elemental powder method using Ti, Si and B powders as starting materials. It was found that uniaxial and isostatic pressing followed by hot pressing at around 1000°C, for 20 minutes, provided good densification of such alloys. The physicochemical studies were performed by means of scanning electron microscopy, X-ray diffraction, atomic force microscopy and microindentation/wear tests. The investigations revealed a multiphase microstructure formed mainly by α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. The phase transformations after pressureless sintering at 1200°C was also studied by X-ray diffraction for the Ti-18Si-6B composition. As stated in some other researches, these intermetallics in the α-titanium matrix provide high wear resistance and hardness, with the best wear rate of 0.2 mm3/N.m and the highest hardness of around 1300 HV. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Soil attributes reflect influence of the geomorphic surfaces. Therefore, the objective of this work was to investigate the influence of the geomorphic surfaces on soil attributes in a topossequence from low lands to high lands in the Humaitá region, AM. A transect of 4.5 km, from the top of the slope towards the low lands was established and the geomorphic surfaces were identified and limited according to topographic and estratigraphic criteria, based on detailed field investigation. Twenty soil samples were collected in each one of the slope segments within the geomorphic surfaces (G.S.), at the following depths: G.S. I: LAa (0.0-0.16 and 0.48-0.79 m); G.S. II: Lad1 (0.0-0.13 and 0.44-0.70) and Lad2 (0.0-0.10 and 0.30-0.55 m); G.S. III: RYve1 (0.0-0.18 and 0.51-0.89) and RYve2 (0.0-0.23 and 0.58-0.91 m). The sampling depths were determined by the surface and subsurface horizon depths, defined during the soil morphological description. Physical analysis involved particle size distribution, disperse clay, soil and particle density and total porosity. The chemical analysis involved determinations of pH in water and KCl, exchangeable cations, exchangeable Al, total acidity (H+Al), available P, organic carbon. The relief variations contributed to the presence of dystrophic soils in the geomorphic surface I and eutrophic soils in the geomorphic surface III. The multivariate statistical techniques were able to separate three heterogeneous groups, equivalent to the mapped geomorphic surfaces.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.
Resumo:
Agroindustrial by-products and residues from treatment of sewage sludge have been recently recycled as soil amendments. This study was aimed at assessing toxic potential of biosolid, obtained from a sewage treatment plant (STP), vinasse, a by-product of the sugar cane industry, and a combination of both residues using Allium cepa assay. Bioprocessing of these samples by a terrestrial invertebrate (diplopod Rhinocricus padbergi) was also examined. Bioassay assembly followed standards of the Brazilian legislation for disposal of these residues. After adding residues, 20 diplopods were placed in each terrarium, where they remained for 30 days. Chemical analysis and the A. cepa assay were conducted before and after bioprocessing by diplopods. At the end of the bioassay, there was a decrease in arsenic and mercury. For the remaining metals, accumulation and/or bioavailability varied in all samples but suggested bioprocessing by animals. The A. cepa test revealed genotoxic effects characterized by different chromosome aberrations. Micronuclei and chromosome breaks on meristematic cells and F1 cells with micronuclei were examined to assess mutagenicity of samples. After 30 days, the genotoxic effects were significantly reduced in the soil + biosolid and soil + biosolid + vinasse groups as well as the mutagenic effects in the soil + biosolid + vinasse group. Similar to vermicomposting, bioprocessing of residues by diplopods can be a feasible alternative and used prior to application in crops to improve degraded soils and/or city dumps. Based on our findings, further studies are needed to adequately dispose of these residues in the environment. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Forest fragmentation occurs normally in an area around the city or with high agricultural influence, such as the Forest of Quilombo that lies in Metropolitan Campinas/SP- Brazil. This forest is one such example since it is separated from the other forest fragments in the region for several types of human action. The objective of this study is to analyze the macro and micronutrients and soil edaphic insect fauna in the forest, pasture and sugar cane and inferring the impacts caused by the Mata do Quilombo cattle farming and urban expansion in chemical aspects of soil. Samples were collected in June/11, according to the procedure of method traps pitfall traps. In addition, at each sampling point four composite samples were collected for soil fertility analysis. Samples were collected at six points: pasture, degraded forest (near pasture), preserved forest (near pasture), degraded forest (near cane sugar), preserved forest (near cane sugar), and sugar cane sugar. The samples thus prepared were analyzed Ca, P, K, Mg, pH, organic matter, H + Al, Sum of Base (SB), Base Percentage Saturation (V%), Cation Exchange Capacity (CEC) and trace elements (S, B, Cu, Fe, Mg and Zn). Generally it can be seen that the group of organisms of soil fauna presented with little biodiversity. The number of individuals also shows little species, taxonomic groups showing the highest degree of impact that the remaining forest has suffered. Regarding the analysis of fertility it can be observed that the soil of the surrounding areas of the forest is under direct influence of agriculture. © 2013 WIT Press.
Resumo:
Purpose: The objectives of this study were to investigate the flexural strength (FS) and chemical interaction between 2-tert-butylaminoethyl methacrylate (TBAEMA) and a denture base acrylic resin. Materials and Methods: Specimens were divided into five groups according to the concentration of TBAEMA incorporated in acrylic resin Onda-Cryl (0%, 1%, 2%, 3%, 4%) and were submitted to Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (XPS-ESCA), and differential scanning calorimetry (DSC) analyses. FS of the specimens was tested, and results were analyzed by ANOVA/Tukey's test (α < 0.05). Results: Different nitrogen ratios were observed on specimens' surfaces: 0.36%, 0.54%, 0.35%, and 0.20% for groups 1%, 2%, 3%, and 4%, respectively. FTIR indicated copolymerization of acrylic resin and TBAEMA, and DSC results demonstrated a decrease in glass transition temperature (Tg). Significant differences were found for FS (p < 0.05). The mean values were 91.1 ± 5.5,A 77.0 ± 13.1,B 67.2 ± 12.5,B 64.4 ± 13.0,B and 67.2 ± 5.9B MPa for groups 0%, 1%, 2%, 3% and 4%, respectively (same superscript letters indicate no significant difference). Conclusions: The incorporation of TBAEMA in acrylic resin resulted in copolymerization and the presence of amine groups on specimens' surfaces, and in decreases of Tg and FS. © 2012 by the American College of Prosthodontists.