910 resultados para Sodium diclofenac


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys), as well as meat quality in terms of oxidative stability in post mortem tissues of lambs offered diets with an increasing dose rate of selenized enriched yeast (SY), or sodium selenite (SS). Fifty lambs were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.11, 0.21 or 0.31 mg/kg DM to give total Se contents of 0.19, 0.3, 0.4 and 0.5 mg Se/kg DM for treatments T1, T2, T3 and T4, respectively) or SS (0.11 mg/kg DM to give 0.3 mg Se/kg DM total Se [T5]). At enrolment and at 28, 56, 84 and 112 d following enrolment, blood samples were taken for Se and Se species determination, as well as glutathione peroxidase (GSH-Px) activity. At the end of the study lambs were euthanased and samples of heart, liver, kidney, and skeletal muscle were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in Longissimus Thoracis. The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, and erythrocyte GSH-Px activity. Comparable doses of SS supplementation did not result in significant differences between these parameters. With the exception of kidney tissue, all other tissues showed a dose dependant response to increasing concentrations of dietary SY, such that total Se and SeMet increased. Selenium content of Psoas Major was higher in animals fed SY when compared to a similar dose of SS, indicating improvements in Se availability and retention. There were no significant treatment effects on meat quality assessments GHS-Px and TBARS, reflecting the lack of difference in the proportion of total Se that was comprised as SeCys. However, oxidative stability improved marginally with ascending tissue Se content, providing an indication of a linear dose response whereby TBARS improved with ascending SY inclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar anti proliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca),were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (P <= 0.05) increases in Ca ion concentration and significant (P <= 0.05) decreases in pH. At certain levels of SHMP, higher concentrations of added Ca significantly increased (P <= 0.05) kinematic viscosity, particle diameter, and sediment. Increasing SHMP concentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (P <= 0.05). Adding SHMP up to 0.7% influenced pH of soymilk in different ways, depending on the level of Ca addition. When the pH of Ca-fortified soymilk was adjusted to a higher level, ionic Ca decreased as pH increased. Ihere was a negative linear relationship between the logarithm of ionic Ca concentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use atomistic molecular dynamics simulations to probe the effects of added sodium chloride (NaCl) and sodium salicylate (NaSal) salts on the spherical-to-threadlike micelle shape transition in aqueous solutions of cetyltrimethylammonium chloride (CTAC) surfactants. Long threadlike micelles are found to be unstable and break into spherical micelles at low concentrations or NaCl, but remain stable for 20 ns above a threshold value of [NaCl] approximate to 3.0 M, which is about 2.5 times larger than the experimental salt concentration at which the transition between spherical and rodlike micelles occurs. The chloride counterions associate weakly oil the surface of the CTAC micelles with the degree of counterion dissociation decreasing slightly with increasing [NaCl] on spherical micelles, but dropping significantly on the threadlike micelles tit high [NaCl]. This effect indicates that the electrolyte ions drive the micellar shape transition by screening the electrostatic repulsions between the micellar headgroups, The aromatic salicylate counterions, on the other hand, penetrate inside the micelle with their hydrophilic groups staying in the surfactant headgroup region and the hydrophobic groups partially embedded into the hydrophobic core of the micelle. The strong association of the salicylate ions with the surfactant headgroups leads to dense packing of the surfactant molecules, which effectively reduces the surface area per surfactant, and increases intramicellar ordering of the surfactant headgroups, favoring the formation of long threadlike micelles. Simulation predictions of the geometric and electrostatic properties of the spherical and threadlike micelles are in good agreement with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the concentration of total selenium (Se) and proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the tissues of female turkeys offered diets containing graded additions of selenized-enriched yeast (SY), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of breast and thigh muscle were assessed at 0 and 10 days post mortem. A total of 216 female turkey poults were enrolled in the study. A total of 24 birds were euthanized at the start of the study and samples of blood, breast, thigh, heart, liver, kidney and gizzard were collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments(n548 birds/treatment) that differed either in Se source (SY v. SS) or dose (Con [0.2 mg/kg total Se], SY-L and SS-L [0.3mg/kg total Se as SY and SS, respectively] and SY-H [0.45mg total Se/kg]). Following 42 and 84 days of treatment 24 birds per treatment were euthanized and samples of blood, breast, thigh, heart, liver, kidney and gizzard were retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in breast and thigh tissue at the end of the study. There were responses (P,0.001) in all tissues to the graded addition of dietary Se, although rates of accumulation were highest in birds offered SY. There were notable differences between tissue types and treatments in the distribution of SeMet and SeCys, and the activity of tissue and erythrocyte GSH-Px (P,0.05). SeCys was the predominant form of Se in visceral tissue and SeMet the predominant form in breast tissue. SeCys contents were greater in thigh when compared with breast tissue. Muscle tissue GSH-Px activities mirrored SeCys contents. Despite treatment differences in tissue GSH-Px activity, there were no effects of treatment on any meat quality parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex [(C(NH2)3)3ZrOH(CO3)3·H2O]2 (A) has been shown by means of a single crystal X-ray diffraction study to contain [C(NH2)3]+ cations and dimeric anions of formulation [(ZrOH(CO3)3)2]6−. The anion is centrosymmetric with each metal being bonded to two bridging OH groups and three chelating CO2−3 ions. The Zr atoms are thus eight coordinate with a dodecahedral environments. The ZrO distances formed by the bridgng OH groups are shorter than those formed through zirconiu carbonate interactions. The non-bonded Zr…Zr distance is 3.47(2) Å. An infrared spectroscopic investigation of A provides data which support the findings of the crystallographic study. Likewise the complex Na6(ZrOH(CO2O4)3)2·7H2O (B) contains the anion [(ZrOH(C2O4)3)2]6−. This anion is structurally related to the anion in A as each Zr atom has an eight-coordinate dodecahedral environment being bonded to two bridging OH groups and three chelating oxalate ligands, but has no imposed crysallographic symmetry. The Zr…Zr non-bonded distance is 3.50(1) Å. The OZrO bridge angles are 69.7(4)° and A and 67.4(3)° in B.