851 resultados para SnO2 membrane
Resumo:
The physical and electrochemical properties of Ti-SnO2/Sb electrodes obtained by the thermal decomposition of solutions of the precursor salts SnCl2×2H2O/SbCl3 and SnSO4/Sb2(SO4)3 were investigated. The reversibility of the cyclic voltammetric response of the Fe(CN)6(4-)/Fe(CN)6(3-) redox couple was assessed using the obtained electrodes. Their catalytic activity for the oxygen-evolving reaction and maximum capacity for electronic transfer were also evaluated by potential and current linear scans in 0.5 mol L-1 H2SO4. Additionally, scanning electron microscopy analyses allowed the visualization of the morphology of the oxide films obtained. The best results were presented by the electrodes obtained from the chloride salt precursors.
Resumo:
Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-ray structures and resembles the fold of other nitrophorins. However, a chain-like arrangement in the crystal lattice due to a number of head-to-tail electrostatic stabilizing interactions is found in NP7. Furthermore, the X-ray structures also reveal ligand-dependent changes in the orientation of the heme, as well as in specific interactions between the A-B and G-H loops, which are considered to be relevant for the biological function of nitrophorins. Fast and ultrafast laser triggered ligand rebinding experiments demonstrate the pH-dependent ligand migration within the cavities and the exit route. Finally, the topological distribution of pockets located around the heme as well as from inner cavities present at the rear of the protein provides a distinctive feature in NP7, so that while a loop gated exit mechanism to the solvent has been proposed for most nitrophorins, a more complex mechanism that involves several interconnected gas hosting cavities is proposed for NP7.
Resumo:
Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5mgO2L-1 and a membrane specific aeration demand (SADm) of 1mh-1, where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1mh-1 doubled the values of transmembrane pressure, without recovery after achieving the initial conditions
Resumo:
Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.
Resumo:
This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems
Resumo:
Tin oxide (SnO2) is widely used in industry as raw material for electronic devices, plating of different types of materials, for dyes and pigments, for electroplating, heterogeneous catalysis, etc. In this work SnO2 was obtained by a controlled precipitation method with special attention to the effects the tin precursor has on the microstructure of the final product. The most appropriate pH for obtaining SnO2 with the rutile structure as the main phase is 6.25 for SnCl2 and 6.40 for SnSO4. After heat treatment at 600 °C, particles of nanometric order (~10 - 30 nm approx) were obtained. The characterization of the solid phase was made by X-ray diffraction (XRD), thermal analysis (DTA/TG), transmission electron microscopy (TEM) and Fourier transformed infrared spectroscopy (FTIR).
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
Silica obtained from rice husk after acid leaching and calcination was compared to commercial silica as a catalyst support. CaO and SnO2 catalysts were prepared by impregnation and tested in the transesterification of soybean oil and the esterification of oleic acid. CaO catalysts showed basic character and were the most active for transesterification, whereas SnO2 catalysts were acid and the most effective for esterification. In both cases the performances of the catalysts prepared with rice husk ash and commercial silica were similar. These results demonstrate that rice husk is a cost-effective and environmentally-friendly source of silica that can be used as a catalyst support.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
Neste trabalho foi estudada resistência de cadinhos de SnO2 dopados com 1%mol de ZnO frente a corrosão na fusão de vidro contendo metais pesados. Os cadinhos foram obtidos através do processo de colagem de barbotina, e a sinterização foi realizada até a temperatura de 1400ºC por 4 horas. Os vidros foram fundidos uma única vez por 1 hora, sendo que o vidro de composição 50B2O3-50PbO à 700 ºC, o de composição 60B2O3-40BaO à 1150 ºC e o de composição 66,67B2O3-33,33PbO à 700 ºC, sendo resfriados no interior dos cadinhos. Estes cadinhos foram então preparados e analisados por MEV-EDS.
Resumo:
Interest in recovery of valuable components from process streams has increased in recent years. Purpose of biorefinery is to utilize components that otherwise would go to waste. Hemicelluloses, for example, could be utilized in production of many valuable products. One possible way to separate and fractionate hemicelluloses is membrane filtration. In the literature part of this work membrane fouling in filtration processes of pulp and paper process- and wastewaters was investigated. Especially purpose was to find out the possible fouling compounds, after which facilities to remove or modify such components less harmful were studied. In the experimental part different pretreatment methods, mainly to remove or degrade lignin from wood hydrolysate, were studied. In addition, concentration of hemicelluloses and separation from lignin were examined with two ultrafiltration membranes; UFX5 and RC70PP. Changes in feed solution, filtration capacity and fouling of membranes were used to evaluate the effects of pretreatment methods. Changes in hydrolysate composition were observed with different analysis methods. Filtration of hydrolysate proved to be challenging, especially with the UFX5 membrane. The more hydrophilic RC70PP membrane did not seem to be fouled as severely as the UFX5 membrane, according to pure water flux measurements. The UFX5 membrane retained hemicelluloses rather well, but problems arose from rapid flux decline resulting from concentration polarization and fouling of membrane. Most effective pretreatment methods in the case with the UFX5 membrane proved to be prefiltration with the RC70PP membrane, activated carbon adsorption and photocatalytic oxidation using titanium dioxide and UV radiation. An additional experiment with PHW extract showed that pulsed corona discharge treatment degraded lignin quite efficiently and thus improved filtration capacity remarkably, even over six times compared to the filtration with untreated extract.
Resumo:
A síntese do complexo sólido de estanho(II)-EDTA é descrita e sua caracterização efetuada através da análise elementar, espectroscopia de absorção na região do infravermelho, difratometria de raios X e ressonância magnética nuclear de ¹H e 13C. O comportamento térmico é avaliado através das curvas termogravimétricas TG e de análise térmica diferencial DTA em atmosferas inerte e oxidante sugerindo etapas de decomposição térmica para o quelato de estequiometria [H2SnH2O(NCH2(CH2COO)2)2].¹/2H2O. As microscopias eletrônicas de varredura demonstram diferentes morfologias para os resíduos óxidos obtidos a 1200ºC em função da razão de aquecimento utilizada.
Resumo:
A atividade eletrocatalítica para a oxidação de ácido fórmico e formaldeído em eletrodos binários de Pt e SnO2 e ternários de Pt, RuO2 e SnO2 em diferentes composições, foi investigada através das técnicas de voltametria cíclica e cronoamperometria. Os materiais foram preparados por decomposição térmica de precursores poliméricos na temperatura de 400°C. Os experimentos de voltametria cíclica mostraram que os eletrodos mistos proporcionaram uma diminuição de ~100 mV (ERH) no potencial de pico de oxidação das moléculas orgânicas em relação ao eletrodo contendo somente Pt e indicaram que a composição Pt0,6Ru0,2Sn0,2Oy possui maior densidade de corrente de oxidação em potenciais inferiores ao potencial de pico. Os experimentos de cronoamperometria confirmam a contribuição da adição de SnO2 e RuO2 para o aumento da atividade catalítica em menores valores de potencial.
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.