891 resultados para Smart City, monitoraggio ambientale, Particolato, Smart sensor, Sistemi embedded
Small-angle X-ray scattering study of the smart thermo-optical behavior of zirconyl aqueous colloids
Resumo:
The smart thermo-optical systems studied here are based on the unusual thermoreversible sol-gel transition of zirconyl chloride aqueous solution modified by sulfuric acid in the molar ratio Zr/SO4:3/1. The transparency to the visible light changes during heating due to light scattering. This feature is related to the aggregates growth that occurs during gelation. These reversible changes can be controlled by the amount of chloride ions in solution. The thermoreversible sol-gel transition temperature increases from 323 to 343 K by decreasing the molar ratio Cl/Zr from 7.0 to 1.3. In this work the effect of the concentration of chloride ions on the structural characteristics of the system has been analyzed by in situ SAXS measurements during the sol-gel transition carried out at 323 and 333 K. The experimental SAXS curves of sols exhibit three regions at small, medium and high scattering vectors characteristics of Guinier, fractal and Porod regimes, respectively. The radius of primary particles, obtained from the crossover between the fractal and Porod regimes, remains almost invariable with the chloride concentration, and the value (4 Angstrom) is consistent with the size of the molecular precursor. During the sol-gel transition the aggregates grow with a fractal structure and the fractal dimensionality decreases from 2.4 to 1.8. This last value is characteristic of a cluster-cluster aggregation controlled by a diffusion process. Furthermore, the time exponent of aggregate growth presents values of 0.33 and 1, typical of diffusional and hydrodynamic motions. A crossover between these two regimes is observed.
Resumo:
Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.
Resumo:
IEEE 1451 Standard is intended to address the smart transducer interfacing problematic in network environments. Usually, proprietary hardware and software is a very efficient solution to in planent the IEEE 1451 normative, although can be expensive and inflexible. In contrast, the use of open and standardized tools for implementing the IEEE 1451 normative is proposed in this paper. Tools such as Java and Phyton programming languages, Linux, programmable logic technology, Personal Computer resources and Ethernet architecture were integrated in order to constructa network node based on the IEEE 1451 standards. The node can be applied in systems based on the client-server communication model The evaluation of the employed tools and expermental results are presented. © 2005 IEEE.
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
Incluye Bibliografía
Resumo:
Smart micro-grids offer a new challenging domain for power theories and metering techniques, because they include a variety of intermittent power sources which positively impact on power flow and distribution losses, but may cause voltage asymmetry and frequency variation. Due to the limited power capability of smart micro-grids, the voltage distortion can also get worse (in case of supplying non-linear loads), affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required, since they form the basis for supply and load characterization. A revision of revenue metering techniques is also needed, to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage unbalance and distortion. This paper shows that the Conservative Power Theory (CPT) provides a suitable background to cope with smart grids characterization and metering needs. Experimental results validate the proposed approach. © 2010 IEEE.
Resumo:
Distributed Generators (DG) are generally modeled as PQ or PV buses in power flow studies. But in order to integrate DG units into the distribution systems and control the reactive power injection it is necessary to know the operation mode and the type of connection to the system. This paper presents a single-phase and a three-phase mathematical model to integrate DG in power flow calculations in distribution systems, especially suited for Smart Grid calculations. If the DG is in PV mode, each step of the power flow algorithm calculates the reactive power injection from the DG to the system to keep the voltage in the bus in a predefined level, if the DG is in PQ mode, the power injection is considered as a negative load. The method is tested on two well known test system, presenting single-phase results on 85 bus system, and three-phase results in the IEEE 34 bus test system. © 2011 IEEE.
Resumo:
This paper proposes a simple and powerful architecture for publication and universal access to smart transducers, through existing and established open standards. Smart transducers are put to work on standards and styles already included in the Web, exploring resources in Cloud Computing and simplifying access to data. © 2012 IEEE.
Resumo:
In dealing with computer networks, these allow the flow of information through the resources of various equipment's. This work describes the implementation through the encapsulation of Protocol DNP3, usually employed in Smart Grid communication, in a simulator of discrete events. The NS-2 is a simulator in open source of network events, that facilitate the development of communication networks scenarios considering the protocols involved, in wireless or wired technologies. The objective of this work is to develop the DNP3 protocol encapsulation over a TCP/IP in the in the discrete event Simulator NS-2, allowing an analysis of behavior of a middle or large network sized in Smart Grid applications. © 2013 IEEE.
Resumo:
Demand response has gained increasing importance in the context of competitive electricity markets and smart grid environments. In addition to the importance that has been given to the development of business models for integrating demand response, several methods have been developed to evaluate the consumers' performance after the participation in a demand response event. The present paper uses those performance evaluation methods, namely customer baseline load calculation methods, to determine the expected consumption in each period of the consumer historic data. In the cases in which there is a certain difference between the actual consumption and the estimated consumption, the consumer is identified as a potential cause of non-technical losses. A case study demonstrates the application of the proposed method to real consumption data. © 2013 IEEE.
Resumo:
This paper presents simulation results of the DNP3 communication protocol over a TCP/IP network, for Smart Grid applications. The simulation was performed using the NS-2 network simulator. This study aimed to use the simulation to verify the performance of the DNP3 protocol in a heterogeneous LAN. Analyzing the results it was possible to verify that the DNP3 over a heterogeneous traffic network, with communication channel capacity between 60 and 85 percent, it works well with low packet loss and low delay, however, with traffic values upper 85 percent, the DNP3 usage becomes unfeasible because the information lost, re-transmissions and latency are significantly increased. © 2013 IEEE.
Resumo:
In Smart Grids, a variety of new applications are available to users of the electrical system (from consumers to the electric system operators and market operators). Some applications such as the SCADA systems, which control generators or substations, have consequences, for example, with a communication delay. The result of a failure to deliver a control message due to noncompliance of the time constraint can be catastrophic. On the other hand, applications such as smart metering of consumption have fewer restrictions. Since each type of application has different quality of service requirements (importance, delay, and amount of data to transmit) to transmit its messages, the policy to control and share the resources of the data communication network must consider them. In this paper Markov Decision Process Theory is employed to determine optimal policies to explore as much as possible the availability of throughput in order to transmit all kinds of messages, considering the quality of service requirements defined to each kind of message. First a non-preemptive model is formulated and after that a preemptive model is derived. Numerical results are used to compare FIFO, non-preemptive and preemptive policies.
Resumo:
Faced with an imminent restructuring of the electric power system, over the past few years many countries have invested in a new paradigm known as Smart Grid. This paradigm targets optimization and automation of electric power network, using advanced information and communication technologies. Among the main communication protocols for Smart Grids we have the DNP3 protocol, which provides secure data transmission with moderate rates. The IEEE 802.15.4 is another communication protocol also widely used in Smart Grid, especially in the so-called Home Area Network (HAN). Thus, many applications of Smart Grid depends on the interaction of these two protocols. This paper proposes modeling, in the traditional network simulator NS-2, the integration of DNP3 protocol and the IEEE 802.15.4 wireless standard for low cost simulations of Smart Grid applications.
Resumo:
The technologies are advancing at a pace so expressive that allow the increase of the power quality from generation until the distribution to end customers. This improvement has been made possible through the automation of the energy that follows to a better quality of the energy provided, a lower energy supply disruptions and a very short recovery time. The trend of today and the near future is the distributed energy generation. To keep the automated control of the chain, the presence of Smart Grids is needed and that will be the most efficient and economical way to manage the entire system. Within this theme, is going to be necessary analyze the electric cars that promise to promote a more sustainable transport because it doesn’t uses fossil fuels, and more healthy because it does not emit pollutants into the atmosphere. The popularization of this type of vehicle is estimated to happen in a few decades and the case study analyzing its influence on the demand of the electrical system is something that will be very important in the near future. This paper presents a study of the influence of the inclusion of charges refering to electric cars