881 resultados para Sleep Onset Latency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : The function of sleep for the organism is one of the most persistent and perplexing questions in biology. Current findings lead to the conclusion that sleep is primarily for the brain. In particular, a role for sleep in cognitive aspects of brain function is supported by behavioral evidence both in humans and animals. However, in spite of remarkable advancement in the understanding of the mechanisms underlying sleep generation and regulation, it has been proven difficult to determine the neurobiological mechanisms underlying the beneficial effect of sleep, and the detrimental impact of sleep loss, on learning and memory processes. In my thesis, I present results that lead to several critical steps forward in the link between sleep and cognitive function. My major result is the molecular identification and physiological analysis of a protein, the NR2A subunit of NMDA receptor (NMDAR), that confers sensitivity to sleep loss to the hippocampus, a brain structure classically involved in mnemonic processes. Specifically, I used a novel behavioral approach to achieve sleep deprivation in adult C57BL6/J mice, yet minimizing the impact of secondary factors associated with the procedure,.such as stress. By using in vitro electrophysiological analysis, I show, for the first time, that sleep loss dramatically affects bidirectional plasticity at CA3 to CA1 synapses in the hippocampus, a well established cellular model of learning and memory. 4-6 hours of sleep loss elevate the modification threshold for bidirectional synaptic plasticity (MT), thereby promoting long-term depression of CA3 to CA 1 synaptic strength after stimulation in the theta frequency range (5 Hz), and rendering long-term potentiation induction.more difficult. Remarkably, 3 hours of recovery sleep, after the deprivation, reset the MT at control values, thus re-establishing the normal proneness of synapses to undergo long-term plastic changes. At the molecular level, these functional changes are paralleled by a change in the NMDAR subunit composition. In particular, the expression of the NR2A subunit protein of NMDAR at CA3 to CA1 synapses is selectively and rapidly increased by sleep deprivation, whereas recovery sleep reset NR2A synaptic content to control levels. By using an array of genetic, pharmacological and computational approaches, I demonstrate here an obligatory role for NR2A-containing NMDARs in conveying the effect of sleep loss on CA3 to CAl MT. Moreover, I show that a genetic deletion of the NR2A subunit fully preserves hippocampal plasticity from the impact of sleep loss, whereas it does not alter sleepwake behavior and homeostatic response to sleep deprivation. As to the mechanism underlying the effects of the NR2A subunit on hippocampal synaptic plasticity, I show that the increased NR2A expression after sleep loss distinctly affects the contribution of synaptic and more slowly recruited NMDAR pools activated during plasticity-induction protocols. This study represents a major step forward in understanding the mechanistic basis underlying sleep's role for the brain. By showing that sleep and sleep loss affect neuronal plasticity by regulating the expression and function of a synaptic neurotransmitter receptor, I propose that an important aspect of sleep function could consist in maintaining and regulating protein redistribution and ion channel trafficking at central synapses. These findings provide a novel starting point for investigations into the connections between sleep and learning, and they may open novel ways for pharmacological control over hippocampal .function during periods of sleep restriction. RÉSUMÉ DU PROJET La fonction du sommeil pour l'organisme est une des questions les plus persistantes et difficiles dans la biologie. Les découvertes actuelles mènent à la conclusion que le sommeil est essentiel pour le cerveau. En particulier, le rôle du sommeil dans les aspects cognitifs est soutenu par des études comportementales tant chez les humains que chez les animaux. Cependant, malgré l'avancement remarquable dans la compréhension des mécanismes sous-tendant la génération et la régulation du sommeil, les mécanismes neurobiologiques qui pourraient expliquer l'effet favorable du sommeil sur l'apprentissage et la mémoire ne sont pas encore clairs. Dans ma thèse, je présente des résultats qui aident à clarifier le lien entre le sommeil et la fonction cognitive. Mon résultat le plus significatif est l'identification moléculaire et l'analyse physiologique d'une protéine, la sous-unité NR2A du récepteur NMDA, qui rend l'hippocampe sensible à la perte de sommeil. Dans cette étude, nous avons utilisé une nouvelle approche expérimentale qui nous a permis d'induire une privation de sommeil chez les souris C57BL6/J adultes, en minimisant l'impact de facteurs confondants comme, par exemple, le stress. En utilisant les techniques de l'électrophysiologie in vitro, j'ai démontré, pour la première fois, que la perte de sommeil est responsable d'affecter radicalement la plasticité bidirectionnelle au niveau des synapses CA3-CA1 de l'hippocampe. Cela correspond à un mécanisme cellulaire de l'apprentissage et de la mémoire bien établi. En particulier, 4-6 heures de privation de sommeil élèvent le seuil de modification pour la plasticité synaptique bidirectionnelle (SM). Comme conséquence, la dépression à long terme de la transmission synaptique est induite par la stimulation des fibres afférentes dans la bande de fréquences thêta (5 Hz), alors que la potentialisation à long terme devient plus difficile. D'autre part, 3 heures de sommeil de récupération sont suffisant pour rétablir le SM aux valeurs contrôles. Au niveau moléculaire, les changements de la plasticité synaptiques sont associés à une altération de la composition du récepteur NMDA. En particulier, l'expression synaptique de la protéine NR2A du récepteur NMDA est rapidement augmentée de manière sélective par la privation de sommeil, alors que le sommeil de récupération rétablit l'expression de la protéine au niveau contrôle. En utilisant des approches génétiques, pharmacologiques et computationnelles, j'ai démontré que les récepteurs NMDA qui expriment la sous-unité NR2A sont responsables de l'effet de la privation de sommeil sur le SM. De plus, nous avons prouvé qu'une délétion génétique de la sous-unité NR2A préserve complètement la plasticité synaptique hippocampale de l'impact de la perte de sommeil, alors que cette manipulation ne change pas les mécanismes de régulation homéostatique du sommeil. En ce qui concerne les mécanismes, j'ai .découvert que l'augmentation de l'expression de la sous-unité NR2A au niveau synaptique modifie les propriétés de la réponse du récepteur NMDA aux protocoles de stimulations utilisés pour induire la plasticité. Cette étude représente un pas en avant important dans la compréhension de la base mécaniste sous-tendant le rôle du sommeil pour le cerveau. En montrant que le sommeil et la perte de sommeil affectent la plasticité neuronale en régulant l'expression et la fonction d'un récepteur de la neurotransmission, je propose qu'un aspect important de la fonction du sommeil puisse être finalisé au règlement de la redistribution des protéines et du tracking des récepteurs aux synapses centraux. Ces découvertes fournissent un point de départ pour mieux comprendre les liens entre le sommeil et l'apprentissage, et d'ailleurs, ils peuvent ouvrir des voies pour des traitements pharmacologiques dans le .but de préserver la fonction hippocampale pendant les périodes de restriction de sommeil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep deprivation (SD) results in increased electroencephalographic (EEG) delta power during subsequent non-rapid eye movement sleep (NREMS) and is associated with changes in the expression of circadian clock-related genes in the cerebral cortex. The increase of NREMS delta power as a function of previous wake duration varies among inbred mouse strains. We sought to determine whether SD-dependent changes in circadian clock gene expression parallel this strain difference described previously at the EEG level. The effects of enforced wakefulness of incremental durations of up to 6 h on the expression of circadian clock genes (bmal1, clock, cry1, cry2, csnk1epsilon, npas2, per1, and per2) were assessed in AKR/J, C57BL/6J, and DBA/2J mice, three strains that exhibit distinct EEG responses to SD. Cortical expression of clock genes subsequent to SD was proportional to the increase in delta power that occurs in inbred strains: the strain that exhibits the most robust EEG response to SD (AKR/J) exhibited dramatic increases in expression of bmal1, clock, cry2, csnkIepsilon, and npas2, whereas the strain with the least robust response to SD (DBA/2) exhibited either no change or a decrease in expression of these genes and cry1. The effect of SD on circadian clock gene expression was maintained in mice in which both of the cryptochrome genes were genetically inactivated. cry1 and cry2 appear to be redundant in sleep regulation as elimination of either of these genes did not result in a significant deficit in sleep homeostasis. These data demonstrate transcriptional regulatory correlates to previously described strain differences at the EEG level and raise the possibility that genetic differences underlying circadian clock gene expression may drive the EEG differences among these strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY / PRINCIPLES: The main aim of this study was to investigate profiles of drug users, with a particular focus on illicit drugs other than cannabis, and to explore the effect of early-onset intensive use (drunkenness, daily smoking, high on cannabis) on profiles of illicit drug use. METHODS: Baseline data from a representative sample of 5,831 young Swiss men in the ongoing Cohort Study on Substance Use Risk Factors were used. Substance use (alcohol, tobacco, cannabis and 15 types of other illicit drug) and age of onset of intensive use were assessed. The Item Response Theory (IRT) and prevalence rates at different ages of onset were used to reveal different profiles of illicit drug use. RESULTS: In addition to cannabis, there were two profiles of other illicit drug use: (a) "softer" drug users (uppers, hallucinogens and inhaled drugs), among which ecstasy had the highest discriminatory potential (IRT slope = 4.68, standard error (SE) = 0.48; p <0.001); and (b) "harder" drug users (heroin, ketamine, gamma-hydroxybutyrate/gamma-hydroxylactone, research chemicals, crystal meth and spice), among which ketamine had the highest discriminatory potential (slope = 4.05; SE = 0.63; p <0.001). Onset of intensive use at the age of 12 years or younger also discriminated between these two profiles. CONCLUSION: Both the IRT model and the effect of onset of intensive use enabled two groups of illicit drugs to be identified. In particular, very early onset (at 12 years or younger) intensive use of any substance was a marker for later use of the second group of drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Responses to external stimuli are typically investigated by averaging peri-stimulus electroencephalography (EEG) epochs in order to derive event-related potentials (ERPs) across the electrode montage, under the assumption that signals that are related to the external stimulus are fixed in time across trials. We demonstrate the applicability of a single-trial model based on patterns of scalp topographies (De Lucia et al, 2007) that can be used for ERP analysis at the single-subject level. The model is able to classify new trials (or groups of trials) with minimal a priori hypotheses, using information derived from a training dataset. The features used for the classification (the topography of responses and their latency) can be neurophysiologically interpreted, because a difference in scalp topography indicates a different configuration of brain generators. An above chance classification accuracy on test datasets implicitly demonstrates the suitability of this model for EEG data. Methods: The data analyzed in this study were acquired from two separate visual evoked potential (VEP) experiments. The first entailed passive presentation of checkerboard stimuli to each of the four visual quadrants (hereafter, "Checkerboard Experiment") (Plomp et al, submitted). The second entailed active discrimination of novel versus repeated line drawings of common objects (hereafter, "Priming Experiment") (Murray et al, 2004). Four subjects per experiment were analyzed, using approx. 200 trials per experimental condition. These trials were randomly separated in training (90%) and testing (10%) datasets in 10 independent shuffles. In order to perform the ERP analysis we estimated the statistical distribution of voltage topographies by a Mixture of Gaussians (MofGs), which reduces our original dataset to a small number of representative voltage topographies. We then evaluated statistically the degree of presence of these template maps across trials and whether and when this was different across experimental conditions. Based on these differences, single-trials or sets of a few single-trials were classified as belonging to one or the other experimental condition. Classification performance was assessed using the Receiver Operating Characteristic (ROC) curve. Results: For the Checkerboard Experiment contrasts entailed left vs. right visual field presentations for upper and lower quadrants, separately. The average posterior probabilities, indicating the presence of the computed template maps in time and across trials revealed significant differences starting at ~60-70 ms post-stimulus. The average ROC curve area across all four subjects was 0.80 and 0.85 for upper and lower quadrants, respectively and was in all cases significantly higher than chance (unpaired t-test, p<0.0001). In the Priming Experiment, we contrasted initial versus repeated presentations of visual object stimuli. Their posterior probabilities revealed significant differences, which started at 250ms post-stimulus onset. The classification accuracy rates with single-trial test data were at chance level. We therefore considered sub-averages based on five single trials. We found that for three out of four subjects' classification rates were significantly above chance level (unpaired t-test, p<0.0001). Conclusions: The main advantage of the present approach is that it is based on topographic features that are readily interpretable along neurophysiologic lines. As these maps were previously normalized by the overall strength of the field potential on the scalp, a change in their presence across trials and between conditions forcibly reflects a change in the underlying generator configurations. The temporal periods of statistical difference between conditions were estimated for each training dataset for ten shuffles of the data. Across the ten shuffles and in both experiments, we observed a high level of consistency in the temporal periods over which the two conditions differed. With this method we are able to analyze ERPs at the single-subject level providing a novel tool to compare normal electrophysiological responses versus single cases that cannot be considered part of any cohort of subjects. This aspect promises to have a strong impact on both basic and clinical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep disorders, especially insomnia, daytime sleepiness, sleep apnea syndrome and restless legs syndrome are very frequently encountered in patients with chronic renal failure whether or not they undergo renal replacement therapy. The causes of sleep disorders are multifactorial and not only linked to the renal disease itself, but also to its treatment and its associated psychosocial factors. This article discusses the prevalence and physiopathology of the most frequently encountered sleep disorders in chronic renal failure patients, and highlights the actually available therapeutic options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To identify the genetic causes underlying early-onset autosomal recessive retinitis pigmentosa (arRP) in the Spanish population and describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A total of 244 unrelated families affected by early-onset arRP. METHODS: Homozygosity mapping or exome sequencing analysis was performed in 3 families segregating arRP. A mutational screening was performed in 241 additional unrelated families for the p.Ser452Stop mutation. Haplotype analysis also was conducted. Individuals who were homozygotes, double heterozygotes, or carriers of mutations in RP1 underwent an ophthalmic evaluation to establish a genotype-phenotype correlation. MAIN OUTCOME MEASURES: DNA sequence variants, homozygous regions, haplotypes, best-corrected visual acuity, visual field assessments, electroretinogram responses, and optical coherence tomography images. RESULTS: Four novel mutations in RP1 were identified. The new mutation p.Ser542Stop was present in 11 of 244 (4.5%) of the studied families. All chromosomes harboring this mutation shared the same haplotype. All patients presented a common phenotype with an early age of onset and a prompt macular degeneration, whereas the heterozygote carriers did not show any signs of retinitis pigmentosa (RP). CONCLUSIONS: p.Ser542Stop is a single founder mutation and the most prevalent described mutation in the Spanish population. It causes early-onset RP with a rapid macular degeneration and is responsible for 4.5% of all cases. Our data suggest that the implication of RP1 in arRP may be underestimated. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare the mechanical external work (Wext ) and pendular energy transduction (Rstep ) at spontaneous walking speed (Ss ) in individuals with Prader-Willi syndrome (PWS) versus subjects with nonsyndromal obesity (OB) to investigate whether the early onset of obesity allows PWS subjects to adopt energy conserving gait mechanics. DESIGN AND METHODS: Wext and Rstep were computed using kinematic data acquired by an optoelectronic system and compared in 15 PWS (BMI = 39.5 ± 1.8 kg m(-2) ; 26.7 ± 1.5 year) and 15 OB (BMI = 39.3 ± 1.0 kg m(-2) ; 28.7 ± 1.9 year) adults matched for gender, age and BMI and walking at Ss . RESULTS: Ss was significantly lower in PWS (0.98 ± 0.03 m s(-1) ) than in OB (1.20 ± 0.02 m s(-1) ; P < 0.001). There were no significant differences in Wext per kilogram between groups (PWS: 0.37 ± 0.04 J kg(-1) m(-1) ; OB: 0.40 ± 0.05 J kg(-1) m(-1) ; P = 0.66) and in Rstep (PWS: 69.9 ± 2.9%; OB: 67.7 ± 2.4%; P = 0.56). However, Rstep normalized to Froude number (Rstep /Fr) was significantly greater in PWS (6.0 ± 0.6) than in OB (3.8 ± 0.2; P = 0.001). Moreover, Rstep /Fr was inversely correlated with age of obesity onset (r = -0.49; P = 0.006) and positively correlated with obesity duration (r = 0.38; P = 0.036). CONCLUSION: Individuals with PWS seem to alter their gait to improve pendular energy transduction as a result of precocious and chronic adaptation to loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective:To analyze the influence of stress factors and socio-demographic characteristics on the sleep quality of nursing students. Method: An analytical cross-sectional and quantitative study, conducted with 151 nursing students in São Paulo between March and April of 2012. A form for socio-demographic characteristics, the Instrument to Evaluate Stress in Nursing Students and the Pittsburgh Sleep Index were applied. Results: High levels of stress was predominant for Time Management (27.8%) and Professional Training (30.5%) and low sleep quality (78.8%). The Professional Communication, Professional Training and Theoretical Activity are positively correlated to sleep quality. Work activity, academic year and time for daily studies contributed to a low quality of sleep. Conclusion: Few stress factors from the academic environment and some socio-demographic characteristics contributed to the reduction of sleep quality in students.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils are key components of the inflammatory response and as such contribute to the killing of microorganisms. In addition, recent evidence suggests their involvement in the development of the immune response. The role of neutrophils during the first weeks post-infection with Leishmania donovani was investigated in this study. When L. donovani-infected mice were selectively depleted of neutrophils with the NIMP-R14 monoclonal antibody, a significant increase in parasite numbers was observed in the spleen and bone marrow and to a lesser extent in the liver. Increased susceptibility was associated with enhanced splenomegally, a delay in the maturation of hepatic granulomas, and a decrease in inducible nitric oxide synthase expression within granulomas. In the spleen, neutrophil depletion was associated with a significant increase in interleukin 4 (IL-4) and IL-10 levels and reduced gamma interferon secretion by CD4(+) and CD8(+) T cells. Increased production of serum IL-4 and IL-10 and higher levels of Leishmania-specific immunoglobulin G1 (IgG1) versus IgG2a revealed the preferential induction of Th2 responses in neutrophil-depleted mice. Altogether, these data suggest a critical role for neutrophils in the early protective response against L. donovani, both as effector cells involved in the killing of the parasites and as significant players influencing the development of a protective Th1 immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To associate the sleep quality of Brazilian undergraduate students with health indicators. Method A cross-sectional study was developed with a random sample of 662 undergraduate students from Fortaleza, Brazil. The demographic data, Pittsburgh Sleep Quality Index and health data indicators (smoking, alcoholism, sedentary lifestyle, nutritional condition and serum cholesterol) were collected through a self-administered questionnaire. Blood was collected at a clinical laboratory. In order to estimate the size of the associations, a Poisson Regression was used. Results For students who are daily smokers, the occurrence of poor sleep was higher than in non-smokers (p<0.001). Prevalence rate values were nevertheless close to 1. Conclusion The likelihood of poor sleep is almost the same in smokers and in alcoholics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVETo compare the total sleep time of premature infant in the presence or absence of reducing sensory and environmental stimuli in the neonatal unit.METHODLongitudinal study in a Neonatal Intermediate Care Unit of a public hospital in Sao Paulo. The sample consisted of 13 premature infants. We used polysomnograph and unstructured observation for data collection. We analyzed 240 and 1200 minutes corresponding to the periods of the presence and absence of environmental management, respectively. Data were compared in proportion to the total sleep time in the two moments proposed by the study.RESULTSThe total sleep time in periods without environmental management was on average 696.4 (± 112.1) minutes and with management 168.5 (± 27.9) minutes, proportionally premature infant slept an average of 70.2% during periods with no intervention and 58.0% without management (p=0.002).CONCLUSIONReducing stimulation and handling of premature infant environment periods was effective to provide greater total sleep time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVEAnalyzing the quality of sleep of hypertensive patients registered in the national registration system and monitoring of hypertensive patients.METHODSA cross-sectional study of quantitative and descriptive analyses with 280 hypertensive patients registered in the National Program of Hypertension and Diabetes of the Federal Government in the months from August to October 2011. Questionnaires were used which allowed for tracking sociodemographic data on hypertension and Pittsburgh Sleep Quality Index (PSQI).RESULTSThe prevalence of poor sleep quality among respondents (156 hypertensive patients) and high rates of using medication for sleeping (106 hypertensive patients) was observed. Other relevant data refers to the quality of sleep among hypertensive patients using sleep medication compared to those who do not use it (p≤0.01).CONCLUSIONIndividuals with high blood pressure have a negative association with sleep quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). Narcolepsy is caused by hypocretin (orexin) deficiency, paralleled by a dramatic loss in hypothalamic hypocretin-producing neurons. It is believed that narcolepsy is an autoimmune disorder, although definitive proof of this, such as the presence of autoantibodies, is still lacking. We engineered a transgenic mouse model to identify peptides enriched within hypocretin-producing neurons that could serve as potential autoimmune targets. Initial analysis indicated that the transcript encoding Tribbles homolog 2 (Trib2), previously identified as an autoantigen in autoimmune uveitis, was enriched in hypocretin neurons in these mice. ELISA analysis showed that sera from narcolepsy patients with cataplexy had higher Trib2-specific antibody titers compared with either normal controls or patients with idiopathic hypersomnia, multiple sclerosis, or other inflammatory neurological disorders. Trib2-specific antibody titers were highest early after narcolepsy onset, sharply decreased within 2-3 years, and then stabilized at levels substantially higher than that of controls for up to 30 years. High Trib2-specific antibody titers correlated with the severity of cataplexy. Serum of a patient showed specific immunoreactivity with over 86% of hypocretin neurons in the mouse hypothalamus. Thus, we have identified reactive autoantibodies in human narcolepsy, providing evidence that narcolepsy is an autoimmune disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We investigated clinical predictors of appropriate prophylaxis prior to the onset of venous thromboembolism (VTE). METHODS: In 14 Swiss hospitals, 567 consecutive patients (306 medical, 261 surgical) with acute VTE and hospitalization < 30 days prior to the VTE event were enrolled. RESULTS: Prophylaxis was used in 329 (58%) patients within 30 days prior to the VTE event. Among the medical patients, 146 (48%) received prophylaxis, and among the surgical patients, 183 (70%) received prophylaxis (P < 0.001). The indication for prophylaxis was present in 262 (86%) medical patients and in 217 (83%) surgical patients. Among the patients with an indication for prophylaxis, 135 (52%) of the medical patients and 165 (76%) of the surgical patients received prophylaxis (P < 0.001). Admission to the intensive care unit [odds ratio (OR) 3.28, 95% confidence interval (CI) 1.94-5.57], recent surgery (OR 2.28, 95% CI 1.51-3.44), bed rest > 3 days (OR 2.12, 95% CI 1.45-3.09), obesity (OR 2.01, 95% CI 1.03-3.90), prior deep vein thrombosis (OR 1.71, 95% CI 1.31-2.24) and prior pulmonary embolism (OR 1.54, 95% CI 1.05-2.26) were independent predictors of prophylaxis. In contrast, cancer (OR 1.06, 95% CI 0.89-1.25), age (OR 0.99, 95% CI 0.98-1.01), acute heart failure (OR 1.13, 95% CI 0.79-1.63) and acute respiratory failure (OR 1.19, 95% CI 0.89-1.59) were not predictive of prophylaxis. CONCLUSIONS: Although an indication for prophylaxis was present in most patients who suffered acute VTE, almost half did not receive any form of prophylaxis. Future efforts should focus on the improvement of prophylaxis for hospitalized patients, particularly in patients with cancer, acute heart or respiratory failure, and in the elderly.