487 resultados para Singularities
Resumo:
An overview is given of the limitations of Luttinger liquid theory in describing the real time equilibrium dynamics of critical one-dimensional systems with nonlinear dispersion relation. After exposing the singularities of perturbation theory in band curvature effects that break the Lorentz invariance of the Tomonaga-Luttinger model, the origin of high frequency oscillations in the long time behaviour of correlation functions is discussed. The notion that correlations decay exponentially at finite temperature is challenged by the effects of diffusion in the density-density correlation due to umklapp scattering in lattice models.
Resumo:
We prove a new Morse-Sard-type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for C-2 mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the p-regularity and its bridge toward the rho-regularity which implies topological triviality at infinity.
Resumo:
The Euler obstruction of a function f can be viewed as a generalization of the Milnor number for functions defined on singular spaces. In this work, using the Euler obstruction of a function, we establish several Lê–Greuel type formulas for germs f:(X,0)→(C,0) and g:(X,0)→(C,0). We give applications when g is a generic linear form and when f and g have isolated singularities.
Resumo:
Piezoelectric ceramics, such as PZT, can generate subnanometric displacements, bu t in order to generate multi- micrometric displacements, they should be either driven by high electric voltages (hundreds of volts ), or operate at a mechanical resonant frequency (in narrow band), or have large dimensions (tens of centimeters). A piezoelectric flextensional actuator (PFA) is a device with small dimensions that can be driven by reduced voltages and can operate in the nano- and micro scales. Interferometric techniques are very adequate for the characterization of these devices, because there is no mechanical contact in the measurement process, and it has high sensitivity, bandwidth and dynamic range. A low cost open-loop homodyne Michelson interferometer is utilized in this work to experimentally detect the nanovi brations of PFAs, based on the spectral analysis of the interfero metric signal. By employing the well known J 1 ...J 4 phase demodulation method, a new and improved version is proposed, which presents the following characteristics: is direct, self-consistent, is immune to fading, and does not present phase ambiguity problems. The proposed method has resolution that is similar to the modified J 1 ...J 4 method (0.18 rad); however, differently from the former, its dynamic range is 20% larger, does not demand Bessel functions algebraic sign correction algorithms and there are no singularities when the static phase shift between the interferometer arms is equal to an integer multiple of /2 rad. Electronic noise and random phase drifts due to ambient perturbations are taken into account in the analysis of the method. The PFA nanopositioner characterization was based on the analysis of linearity betw een the applied voltage and the resulting displacement, on the displacement frequency response and determination of main resonance frequencies.
Resumo:
Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.
Resumo:
This thesis deals with Visual Servoing and its strictly connected disciplines like projective geometry, image processing, robotics and non-linear control. More specifically the work addresses the problem to control a robotic manipulator through one of the largely used Visual Servoing techniques: the Image Based Visual Servoing (IBVS). In Image Based Visual Servoing the robot is driven by on-line performing a feedback control loop that is closed directly in the 2D space of the camera sensor. The work considers the case of a monocular system with the only camera mounted on the robot end effector (eye in hand configuration). Through IBVS the system can be positioned with respect to a 3D fixed target by minimizing the differences between its initial view and its goal view, corresponding respectively to the initial and the goal system configurations: the robot Cartesian Motion is thus generated only by means of visual informations. However, the execution of a positioning control task by IBVS is not straightforward because singularity problems may occur and local minima may be reached where the reached image is very close to the target one but the 3D positioning task is far from being fulfilled: this happens in particular for large camera displacements, when the the initial and the goal target views are noticeably different. To overcame singularity and local minima drawbacks, maintaining the good properties of IBVS robustness with respect to modeling and camera calibration errors, an opportune image path planning can be exploited. This work deals with the problem of generating opportune image plane trajectories for tracked points of the servoing control scheme (a trajectory is made of a path plus a time law). The generated image plane paths must be feasible i.e. they must be compliant with rigid body motion of the camera with respect to the object so as to avoid image jacobian singularities and local minima problems. In addition, the image planned trajectories must generate camera velocity screws which are smooth and within the allowed bounds of the robot. We will show that a scaled 3D motion planning algorithm can be devised in order to generate feasible image plane trajectories. Since the paths in the image are off-line generated it is also possible to tune the planning parameters so as to maintain the target inside the camera field of view even if, in some unfortunate cases, the feature target points would leave the camera images due to 3D robot motions. To test the validity of the proposed approach some both experiments and simulations results have been reported taking also into account the influence of noise in the path planning strategy. The experiments have been realized with a 6DOF anthropomorphic manipulator with a fire-wire camera installed on its end effector: the results demonstrate the good performances and the feasibility of the proposed approach.
Resumo:
[EN]In previous works, many authors have widely used mass consistent models for wind field simulation by the finite element method. On one hand, we have developed a 3-D mass consistent model by using tetrahedral meshes which are simultaneously adapted to complex orography and to terrain roughness length. In addition, we have included a local refinement strategy around several measurement or control points, significant contours, as for example shorelines, or numerical solution singularities. On the other hand, we have developed a 2.5-D model for simulating the wind velocity in a 3-D domain in terms of the terrain elevation, the surface temperature and the meteorological wind, which is consider as an averaged wind on vertical boundaries...
Resumo:
[EN]We present a new strategy, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance...
Resumo:
[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for universal and prismatic pair respectively, is a very well known manipulator that can provide the platform with three degrees of freedom of pure translation, pure rotation or mixed translation and rotation with respect to the base, according to the relative directions of the revolute pair axes (each universal pair comprises two revolute pairs with intersecting and perpendicular axes). In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. Many studies have been reported in the literature on singularities, workspace, and joint clearance influence on the platform accuracy of this manipulator. However, much work has still to be done to reveal all the features this topology can offer to the designer when different architecture, i.e. different geometry are considered. Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of the dissertation presents six new architectures of the 3-UPU TPMs which offer interesting features to the designer. In the second part, a procedure is presented which is based on some indexes, in order to allows the designer to select the best architecture of the 3-UPU TPMs for a given task. Four indexes are proposed as stiffness, clearance, singularity and size of the manipulator in order to apply the procedure.
Resumo:
Parallel mechanisms show desirable characteristics such as a large payload to robot weight ratio, considerable stiffness, low inertia and high dynamic performances. In particular, parallel manipulators with fewer than six degrees of freedom have recently attracted researchers’ attention, as their employ may prove valuable in those applications in which a higher mobility is uncalled-for. The attention of this dissertation is focused on translational parallel manipulators (TPMs), that is on parallel manipulators whose output link (platform) is provided with a pure translational motion with respect to the frame. The first part deals with the general problem of the topological synthesis and classification of TPMs, that is it identifies the architectures that TPM legs must possess for the platform to be able to freely translate in space without altering its orientation. The second part studies both constraint and direct singularities of TPMs. In particular, special families of fully-isotropic mechanisms are identified. Such manipulators exhibit outstanding properties, as they are free from singularities and show a constant orthogonal Jacobian matrix throughout their workspace. As a consequence, both the direct and the inverse position problems are linear and the kinematic analysis proves straightforward.
Resumo:
Präsentiert wird ein vollständiger, exakter und effizienter Algorithmus zur Berechnung des Nachbarschaftsgraphen eines Arrangements von Quadriken (Algebraische Flächen vom Grad 2). Dies ist ein wichtiger Schritt auf dem Weg zur Berechnung des vollen 3D Arrangements. Dabei greifen wir auf eine bereits existierende Implementierung zur Berechnung der exakten Parametrisierung der Schnittkurve von zwei Quadriken zurück. Somit ist es möglich, die exakten Parameterwerte der Schnittpunkte zu bestimmen, diese entlang der Kurven zu sortieren und den Nachbarschaftsgraphen zu berechnen. Wir bezeichnen unsere Implementierung als vollständig, da sie auch die Behandlung aller Sonderfälle wie singulärer oder tangentialer Schnittpunkte einschließt. Sie ist exakt, da immer das mathematisch korrekte Ergebnis berechnet wird. Und schließlich bezeichnen wir unsere Implementierung als effizient, da sie im Vergleich mit dem einzigen bisher implementierten Ansatz gut abschneidet. Implementiert wurde unser Ansatz im Rahmen des Projektes EXACUS. Das zentrale Ziel von EXACUS ist es, einen Prototypen eines zuverlässigen und leistungsfähigen CAD Geometriekerns zu entwickeln. Obwohl wir das Design unserer Bibliothek als prototypisch bezeichnen, legen wir dennoch größten Wert auf Vollständigkeit, Exaktheit, Effizienz, Dokumentation und Wiederverwendbarkeit. Über den eigentlich Beitrag zu EXACUS hinaus, hatte der hier vorgestellte Ansatz durch seine besonderen Anforderungen auch wesentlichen Einfluss auf grundlegende Teile von EXACUS. Im Besonderen hat diese Arbeit zur generischen Unterstützung der Zahlentypen und der Verwendung modularer Methoden innerhalb von EXACUS beigetragen. Im Rahmen der derzeitigen Integration von EXACUS in CGAL wurden diese Teile bereits erfolgreich in ausgereifte CGAL Pakete weiterentwickelt.
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.
Resumo:
This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.