896 resultados para Simulation and modeling applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene, that is a monolayer of carbon atoms arranged in a honeycomb lattice, has been isolated only recently from graphite. This material shows very attractive physical properties, like superior carrier mobility, current carrying capability and thermal conductivity. In consideration of that, graphene has been the object of large investigation as a promising candidate to be used in nanometer-scale devices for electronic applications. In this work, graphene nanoribbons (GNRs), that are narrow strips of graphene, for which a band-gap is induced by the quantum confinement of carriers in the transverse direction, have been studied. As experimental GNR-FETs are still far from being ideal, mainly due to the large width and edge roughness, an accurate description of the physical phenomena occurring in these devices is required to have valuable predictions about the performance of these novel structures. A code has been developed to this purpose and used to investigate the performance of 1 to 15-nm wide GNR-FETs. Due to the importance of an accurate description of the quantum effects in the operation of graphene devices, a full-quantum transport model has been adopted: the electron dynamics has been described by a tight-binding (TB) Hamiltonian model and transport has been solved within the formalism of the non-equilibrium Green's functions (NEGF). Both ballistic and dissipative transport are considered. The inclusion of the electron-phonon interaction has been taken into account in the self-consistent Born approximation. In consideration of their different energy band-gap, narrow GNRs are expected to be suitable for logic applications, while wider ones could be promising candidates as channel material for radio-frequency applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we extend some ideas of statistical physics to describe the properties of human mobility. By using a database containing GPS measures of individual paths (position, velocity and covered space at a spatial scale of 2 Km or a time scale of 30 sec), which includes the 2% of the private vehicles in Italy, we succeed in determining some statistical empirical laws pointing out "universal" characteristics of human mobility. Developing simple stochastic models suggesting possible explanations of the empirical observations, we are able to indicate what are the key quantities and cognitive features that are ruling individuals' mobility. To understand the features of individual dynamics, we have studied different aspects of urban mobility from a physical point of view. We discuss the implications of the Benford's law emerging from the distribution of times elapsed between successive trips. We observe how the daily travel-time budget is related with many aspects of the urban environment, and describe how the daily mobility budget is then spent. We link the scaling properties of individual mobility networks to the inhomogeneous average durations of the activities that are performed, and those of the networks describing people's common use of space with the fractional dimension of the urban territory. We study entropy measures of individual mobility patterns, showing that they carry almost the same information of the related mobility networks, but are also influenced by a hierarchy among the activities performed. We discover that Wardrop's principles are violated as drivers have only incomplete information on traffic state and therefore rely on knowledge on the average travel-times. We propose an assimilation model to solve the intrinsic scattering of GPS data on the street network, permitting the real-time reconstruction of traffic state at a urban scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we discuss a representation of quantum mechanics and quantum and statistical field theory based on a functional renormalization flow equation for the one-particle-irreducible average effective action, and we employ it to get information on some specific systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il fenomeno dello scattering diffuso è stato oggetto di numerosi studi nell’arco degli ultimi anni, questo grazie alla sua rilevanza nell’ambito della propagazione elettromagnetica così come in molti altri campi di applicazione (remote sensing, ottica, fisica, etc.), ma la compresione completa di questo effetto è lungi dall’essere raggiunta. Infatti la complessità nello studio e nella caratterizzazione della diffusione deriva dalla miriade di casistiche ed effetti che si possono incontrare in un ambiente di propagazione reale, lasciando intuire la necessità di trattarne probabilisticamente il relativo contributo. Da qui nasce l’esigenza di avere applicazioni efficienti dal punto di vista ingegneristico che coniughino la definizione rigorosa del fenomeno e la conseguente semplificazione per fini pratici. In tale visione possiamo descrivere lo scattering diffuso come la sovrapposizione di tutti quegli effetti che si scostano dalle classiche leggi dell’ottica geometrica (riflessione, rifrazione e diffrazione) che generano contributi del campo anche in punti dello spazio e direzioni in cui teoricamente, per oggetti lisci ed omogenei, non dovrebbe esserci alcun apporto. Dunque l’effetto principale, nel caso di ambiente di propagazione reale, è la diversa distribuzione spaziale del campo rispetto al caso teorico di superficie liscia ed omogenea in congiunzione ad effetti di depolarizzazione e redistribuzione di energia nel bilancio di potenza. Perciò la complessità del fenomeno è evidente e l’obiettivo di tale elaborato è di proporre nuovi risultati che permettano di meglio descrivere lo scattering diffuso ed individuare altresì le tematiche sulle quali concentrare l’attenzione nei lavori futuri. In principio è stato quindi effettuato uno studio bibliografico così da identificare i modelli e le teorie esistenti individuando i punti sui quali riflettere maggiormente; nel contempo si sono analizzate le metodologie di caratterizzazione della permittività elettrica complessa dei materiali, questo per valutare la possibilità di ricavare i parametri da utilizzare nelle simulazioni utilizzando il medesimo setup di misura ideato per lo studio della diffusione. Successivamente si è realizzato un setup di simulazione grazie ad un software di calcolo elettromagnetico (basato sul metodo delle differenze finite nel dominio del tempo) grazie al quale è stato possibile analizzare la dispersione tridimensionale dovuta alle irregolarità del materiale. Infine è stata condotta una campagna di misure in camera anecoica con un banco sperimentale realizzato ad-hoc per effettuare una caratterizzazione del fenomeno di scattering in banda larga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a research B for the University of Bologna. The course is the civil engineering LAUREA MAGISTRALE at UNIBO. The main purpose of this research is to promote another way of explaining, analyzing and presenting some civil engineering aspects to the students worldwide by theory, modeling and photos. The basic idea is divided into three steps. The first one is to present and analyze the theoretical parts. So a detailed analysis of the theory combined with theorems, explanations, examples and exercises will cover this step. At the second, a model will make clear all these parts that were discussed in the theory by showing how the structures work or fail. The modeling is able to present the behavior of many elements, in scale which we use in the real structures. After these two steps an interesting exhibition of photos from the real world with comments will give the chance to the engineers to observe all these theoretical and modeling-laboratory staff in many different cases. For example many civil engineers in the world may know about the air pressure on the structures but many of them have never seen the extraordinary behavior of the bridge of Tacoma ‘dancing with the air’. At this point I would like to say that what I have done is not a book, but a research of how this ‘3 step’ presentation or explanation of some mechanical characteristics could be helpful. I know that my research is something different and new and in my opinion is very important because it helps students to go deeper in the science and also gives new ideas and inspirations. This way of teaching can be used at all lessons especially at the technical. Hope that one day all the books will adopt this kind of presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly dangerous situations for tractor driver is the lateral rollover in operating conditions. Several accidents, involving tractor rollover, have indeed been encountered, requiring the design of a robust Roll-Over Protective Structure (ROPS). The aim of the thesis was to evaluate tractor behaviour in the rollover phase so as to calculate the energy absorbed by the ROPS to ensure driver safety. A Mathematical Model representing the behaviour of a generic tractor during a lateral rollover, with the possibility of modifying the geometry, the inertia of the tractor and the environmental boundary conditions, is proposed. The purpose is to define a method allowing the prediction of the elasto-plastic behaviour of the subsequent impacts occurring in the rollover phase. A tyre impact model capable of analysing the influence of the wheels on the energy to be absorbed by the ROPS has been also developed. Different tractor design parameters affecting the rollover behaviour, such as mass and dimensions, have been considered. This permitted the evaluation of their influence on the amount of energy to be absorbed by the ROPS. The mathematical model was designed and calibrated with respect to the results of actual lateral upset tests carried out on a narrow-track tractor. The dynamic behaviour of the tractor and the energy absorbed by the ROPS, obtained from the actual tests, showed to match the results of the model developed. The proposed approach represents a valuable tool in understanding the dynamics (kinetic energy) and kinematics (position, velocity, angular velocity, etc.) of the tractor in the phases of lateral rollover and the factors mainly affecting the event. The prediction of the amount of energy to be absorbed in some cases of accident is possible with good accuracy. It can then help in designing protective structures or active security devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between aerosols and sun light plays an important role in the radiative balance of Earth’s atmosphere. This interaction is obtained by measuring the removal (extinction), redistribution (scattering), and transformation into heat (absorption) of light by the aerosols; i.e. their optical properties. Knowledge of these properties is crucial for our understanding of the atmospheric system. rn Light absorption by aerosols is a major contributor to the direct and indirect effects on our climate system, and an accurate and sensitive measurement method is crucial to further our understanding. A homebuilt photoacoustic sensor (PAS), measuring at a 532nm wavelength, was fully characterized and its functionality validated for measurements of absorbing aerosols. The optical absorption cross-sections of absorbing polystyrene latex spheres, to be used as a standard for aerosol absorption measurements, were measured and compared to literature values. Additionally, a calibration method using absorbing aerosol of known complex refractive index was presented.rn A new approach to retrieve the effective broadband refractive indices (mbroad,eff) of aerosol particles by a white light aerosol spectrometer (WELAS) optical particle counter (OPC) was achieved. Using a tandem differential mobility analyzer (DMA)-OPC system, the nbroad,eff are obtained for both laboratory and field applications. This method was tested in the laboratory using substances with a wide range of optical properties and it was used in ambient measurements to retrieve the nbroad,eff of biomass burning aerosols in a nationwide burning event in Israel. The retrieved effective broadband refractive indices for laboratory generated scattering aerosols were: ammonium sulfate (AS), glutaric acid (GA), and sodium chloride, all within 4% of literature values. For absorbing substances, nigrosine and various mixtures of nigrosine with AS and GA were measured, as well as a lightly absorbing substance, Suwannee river fulvic acid (SRFA). For the ambient measurements, the calibration curves generated from this method were to follow the optical evolution of biomass burning (BB) aerosols. A decrease in the overall aerosol absorption and scattering for aged aerosols during the day after the fires compared to the smoldering phase of the fires was found. rn The connection between light extinction of aerosols, their chemical composition and hygroscopicity for particles with different degrees of absorption was studied. The extinction cross-section (σext) at 532nm for different mobility diameters was measured at 80% and 90% relative humidity (RH), and at an RH<10%. The ratio of the humidified aerosols to the dry ones, fRHext(%RH,Dry), is presented. For purely scattering aerosols, fRHext(%RH,Dry) is inversely proportional with size; this dependence was suppressed for lightly absorbing ones. In addition, the validity of the mixing rules for water soluble absorbing aerosols is explored. The difference between the derived and calculated real parts of the complex RIs were less than 5.3% for all substances, wavelengths, and RHs. The obtained imaginary parts for the retrieved and calculated RIs were in good agreement with each other, and well within the measurement errors of retrieval from pulsed CRD spectroscopy measurements. Finally, a core-shell structure model is also used to explore the differences between the models, for substances with low growth factors, under these hydration conditions. It was found that at 80% RH and for size parameters less than 2.5, there is less than a 5 % difference between the extinction efficiencies calculated with both models. This difference is within measurement errors; hence, there is no significant difference between the models in this case. However, for greater size parameters the difference can be up to 10%. For 90% RH the differences below a size parameter of 2.5 were up to 7%.rn Finally, the fully characterized PAS together with a cavity ring down spectrometer (CRD), were used to study the optical properties of soot and secondary organic aerosol (SOA) during the SOOT-11 project in the AIDA chamber in Karlsruhe, Germany. The fresh fractal-like soot particles were allowed to coagulate for 28 hours before stepwise coating them with SOA. The single scattering albedo for fresh fractal-like soot was measured to be 0.2 (±0.03), and after allowing the soot to coagulate for 28 hours and coating it with SOA, it increased to 0.71(±0.01). An absorption enhancement of the coated soot of up to 1.71 (±0.03) times from the non-coated coagulated soot was directly measured with the PAS. Monodisperse measurements of SOA and soot coated with SOA were performed to derive the complex refractive index (m) of both aerosols. A complex refractive index of m = 1.471(±0.008) + i0.0(±0.002) for the SOA-αO3 was retrieved. For the compact coagulated soot a preliminary complex refractive index of m = 2.04(+0.21/-0.14) + i0.34(+0.18/-0.06) with 10nm(+4/-6) coating thickness was retrieved.rn These detail properties can be use by modelers to decrease uncertainties in assessing climatic impacts of the different species and to improve weather forecasting.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is focused on the analysis of sea–level change (last century), based mainly on instrumental observations. During this period, individual components of sea–level change are investigated, both at global and regional scales. Some of the geophysical processes responsible for current sea-level change such as glacial isostatic adjustments and current melting terrestrial ice sources, have been modeled and compared with observations. A new value of global mean sea level change based of tide gauges observations has been independently assessed in 1.5 mm/year, using corrections for glacial isostatic adjustment obtained with different models as a criterion for the tide gauge selection. The long wavelength spatial variability of the main components of sea–level change has been investigated by means of traditional and new spectral methods. Complex non–linear trends and abrupt sea–level variations shown by tide gauges records have been addressed applying different approaches to regional case studies. The Ensemble Empirical Mode Decomposition technique has been used to analyse tide gauges records from the Adriatic Sea to ascertain the existence of cyclic sea-level variations. An Early Warning approach have been adopted to detect tipping points in sea–level records of North East Pacific and their relationship with oceanic modes. Global sea–level projections to year 2100 have been obtained by a semi-empirical approach based on the artificial neural network method. In addition, a model-based approach has been applied to the case of the Mediterranean Sea, obtaining sea-level projection to year 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.