929 resultados para Simplified design method
Resumo:
From modelling to manufacturing, computers have increasingly become partners in the design process, helping automate many phases once carried out by hand. In the creative phase, computational synthesis methods aim at facilitating designers' task through the automated generation of optimally directed design alternatives. Nevertheless, applications of these techniques are mainly academic and industrial design practice is still far from applying them routinely. This is due to the complex nature of many design tasks and to the difficulty of developing synthesis methods that can be easily adapted to multiple case studies and automated simulation. This work stems from the analysis of implementation issues and obstacles to the widespread use of these tools. The research investigates the possibility to remove these obstacles through the application of a novel technique to complex design tasks. The ability of this technique to scale-up without sacrificing accuracy is demonstrated. The successful results confirm the possibility to use synthesis methods in complex design tasks and spread their commercial and industrial application.
Resumo:
Monopile foundations, currently designed using the p-y method, are technically viable in supporting larger offshore wind turbines in waters to a depth of 30 m. The p-y method was developed to better understand the behavior of laterally loaded long slender piles required for the offshore oil and gas installations. The lateral load-deformation behavior of two monopiles, 5 and 7.5 m dia, installed in soft clays of varying undrained shear strength and stiffness, was studied. A combination of axial and lateral loads expected at an offshore wind farm location with a water depth of 30 m was used in the analysis. It was established that the Matlock (1970) p-y curves are too soft and under-estimate the ultimate soil reaction at all depths except at the monopile tip. At the pile tip, the base shear was not accounted for in the p-y curves, hence resulting in the over-estimation of the soil reaction. Consequently, the Matlock (1970) p-y formulation significantly underestimates the monopile ultimate lateral capacity. The use of the Matlock (1970) p-y method would result in over-conservative designs of monopiles for offshore wind turbines. This is an abstract of a paper presented at the Offshore Technology Conference (Houston, TX 5/6-9/2013).
Resumo:
Systems design involves the determination of interdependent variables. Thus the precedence ordering for the tasks of determining these variables involves circuits. Circuits require planning decisions abut how to iterate and where to use estimates. Conventional planning techniques, such as critical path, do not deal with these problems. Techniques are shown in this paper which acknowledge these circuits in the design of systems. These techniques can be used to develop an effective engineering plan, showing where estimates are to be used, how design iterations and reviews are handled, and how information flows during the design work.
Resumo:
We propose and fabricate an A1GaN/GaN high electron mobility transistor (HEMT) on sapphire substrate using a new kind of electron beam (EB) lithography layout for the T-gate. Using this new layout,we can change the aspect ratio (ratio of top gate dimension to gate length) and modify the shape of the T-gate freely. Therefore, we obtain a 0.18μm gate-length AlGaN/GaN HEMT with a unity current gain cutoff frequency (f_T) of 65GHz. The aspect ratio of the T-gate is 10. These single finger devices also exhibit a peak extrinsic transconductance of 287mS/mm and a maximum drain current as high as 980mA/mm.
Resumo:
A design and optimization procedure developed and used for a propeller installed on a twin-semitunnel-hull ship navigating in very shallow and icy water under heavy load conditions is presented. The base propeller for this vessel was first determined using classic design routines under open-water condition with existing model test data. In the optimization process, a panel method code (PROPELLA) was used to vary the pitch values and distributions and take into account the inflow wake distribution, tunnel gap, and cavitation effects. The optimized propeller was able to improve a ship speed of 0.02 knots higher than the desired speed and 0.06 knots higher than the classic B-series propeller. The analysis of the effect of inflow wake, hull tunnel, cavitation, and blade rake angle on propulsive performance is the focus of this paper.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
Our research follows a design science approach to develop a method that supports the initialization of ES implementation projects – the chartering phase. This project phase is highly relevant for implementation success, but is understudied in IS research. In this paper, we derive design principles for a chartering method based on a systematic review of ES implementation literature and semi-structured expert interviews. Our analysis identifies differences in the importance of certain success factors depending on the system type. The proposed design principles are built on these factors and are linked to chartering key activities. We specifically consider system-type-specific chartering aspects for process-centric Business Intelligence & Analytics (BI&A) systems, which are an emerging class of systems at the intersection of BI&A and business process management. In summary, this paper proposes design principles for a chartering method – considering specifics of process-centric BI&A.
Resumo:
This study highlights how heuristic evaluation as a usability evaluation method can feed into current building design practice to conform to universal design principles. It provides a definition of universal usability that is applicable to an architectural design context. It takes the seven universal design principles as a set of heuristics and applies an iterative sequence of heuristic evaluation in a shopping mall, aiming to achieve a cost-effective evaluation process. The evaluation was composed of three consecutive sessions. First, five evaluators from different professions were interviewed regarding the construction drawings in terms of universal design principles. Then, each evaluator was asked to perform the predefined task scenarios. In subsequent interviews, the evaluators were asked to re-analyze the construction drawings. The results showed that heuristic evaluation could successfully integrate universal usability into current building design practice in two ways: (i) it promoted an iterative evaluation process combined with multi-sessions rather than relying on one evaluator and on one evaluation session to find the maximum number of usability problems, and (ii) it highlighted the necessity of an interdisciplinary ad hoc committee regarding the heuristic abilities of each profession. A multi-session and interdisciplinary heuristic evaluation method can save both the project budget and the required time, while ensuring a reduced error rate for the universal usage of the built environments.