363 resultados para Serpentine
Resumo:
Pore waters were collected from nine sites during Leg 125 of the Ocean Drilling Program (ODP). The first four sites (778-781) were drilled in the Mariana forearc on and near Conical Seamount, an active serpentine "mud volcano" located about 80 km behind the trench axis and 120 km in front of the active island arc. The last five sites (782-786) were drilled in the Izu-Bonin forearc between the trench and the outer arc high. Pore waters from the five sites from both areas that penetrated serpentine silts (Sites 778,779,780,783, and 784) are discussed in detail by Mottl (this volume). Here we report analyses of the pore waters from all nine sites for Li, Rb, Sr, Ba, Mn, B, and the sulfur isotopic ratio of dissolved sulfate. Sampling methods and results of analyses for major and minor species determined aboard ship were presented by Fryer, Pearce, Stokking, et al. (1990, doi:10.2973/odp.proc.ir.125.1990).
Resumo:
A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.
Resumo:
[EN] 3D microfluidic device fabrication methods are normally quite expensive and tedious. In this paper, we present an easy and cheap alternative wherein thin cyclic olefin polymer (COP) sheets and pressure sensitive adhesive(PSA) were used to fabricate hybrid 3D microfluidic structures, by the Origami technique, which enables the fabrication of microfluidic devices without the need of any alignment tool. The COP and PSA layers were both cut simultaneously using a portable, low-cost plotter allowing for rapid prototyping of a large variety of designs in a single production step. The devices were then manually assembled using the Origami technique by simply combining COP and PSA layers and mild pressure. This fast fabrication method was applied, as proof of concept, to the generation of a micromixer with a 3D-stepped serpentine design made of ten layers in less than 8 min. Moreover, the micromixer was characterized as a function of its pressure failure, achieving pressures of up to 1000 mbar. This fabrication method is readily accessible across a large range of potential end users, such as educational agencies (schools,universities), low-income/developing world research and industry or any laboratory without access to clean room facilities, enabling the fabrication of robust, reproducible microfluidic devices.