899 resultados para Sensor Data Fusion Applicazioni
Resumo:
The measurement of feed intake, feeding time and rumination time, summarized by the term feeding behavior, are helpful indicators for early recognition of animals which show deviations in their behavior. The overall objective of this work was the development of an early warning system for inadequate feeding rations and digestive and metabolic disorders, which prevention constitutes the basis for health, performance, and reproduction. In a literature review, the current state of the art and the suitability of different measurement tools to determine feeding behavior of ruminants was discussed. Five measurement methods based on different methodological approaches (visual observance, pressure transducer, electrical switches, electrical deformation sensors and acoustic biotelemetry), and three selected measurement techniques (the IGER Behavior Recorder, the Hi-Tag rumination monitoring system and RumiWatchSystem) were described, assessed and compared to each other within this review. In the second study, the new system for measuring feeding behavior of dairy cows was evaluated. The measurement of feeding behavior ensues through electromyography (EMG). For validation, the feeding behavior of 14 cows was determined by both the EMG system and by visual observation. The high correlation coefficients indicate that the current system is a reliable and suitable tool for monitoring the feeding behavior of dairy cows. The aim of a further study was to compare the DairyCheck (DC) system and two additional measurement systems for measuring rumination behavior in relation to efficiency, reliability and reproducibility, with respect to each other. The two additional systems were labeled as the Lely Qwes HR (HR) sensor, and the RumiWatchSystem (RW). Results of accordance of RW and DC to each other were high. The last study examined whether rumination time (RT) is affected by the onset of calving and if it might be a useful indicator for the prediction of imminent birth. Data analysis referred to the final 72h before the onset of calving, which were divided into twelve 6h-blocks. The results showed that RT was significantly reduced in the final 6h before imminent birth.
Resumo:
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, Digital Surface Models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub-metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. The paper describes the development of a LiDAR post-processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post-processing produces a Digital Terrain Model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially-distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR-derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a 2D finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features such as buildings and roads as well as taller vegetation features such as trees and hedges. This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features.
Resumo:
We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
Resumo:
Physiological parameters measured by an embedded body sensor system were demonstrated to respond to changes of the air temperature in an office environment. The thermal parameters were monitored with the use of a wireless sensor system that made possible to turn any existing room into a field laboratory. Two human subjects were monitored over daily activities and at various steady-state thermal conditions when the air temperature of the room was altered from 22-23°C to 25-28°C. The subjects indicated their thermal feeling on questionnaires. The measured skin temperature was distributed close to the calculated mean skin temperature corresponding to the given activity level. The variation of Galvanic Skin Response (GSR) reflected the evaporative heat loss through the body surfaces and indicated whether sweating occurred on the subjects. Further investigations are needed to fully evaluate the influence of thermal and other factors on the output given by the investigated body sensor system.
Resumo:
A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.
Resumo:
This article presents a prototype model based on a wireless sensor actuator network (WSAN) aimed at optimizing both energy consumption of environmental systems and well-being of occupants in buildings. The model is a system consisting of the following components: a wireless sensor network, `sense diaries', environmental systems such as heating, ventilation and air-conditioning systems, and a central computer. A multi-agent system (MAS) is used to derive and act on the preferences of the occupants. Each occupant is represented by a personal agent in the MAS. The sense diary is a new device designed to elicit feedback from occupants about their satisfaction with the environment. The roles of the components are: the WSAN collects data about physical parameters such as temperature and humidity from an indoor environment; the central computer processes the collected data; the sense diaries leverage trade-offs between energy consumption and well-being, in conjunction with the agent system; and the environmental systems control the indoor environment.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
A wind-tunnel study of flow distortion at a meteorological sensor on top of the BT Tower, London, UK
Resumo:
High quality wind measurements in cities are needed for numerous applications including wind engineering. Such data-sets are rare and measurement platforms may not be optimal for meteorological observations. Two years' wind data were collected on the BT Tower, London, UK, showing an upward deflection on average for all wind directions. Wind tunnel simulations were performed to investigate flow distortion around two scale models of the Tower. Using a 1:160 scale model it was shown that the Tower causes a small deflection (ca. 0.5°) compared to the lattice on top on which the instruments were placed (ca. 0–4°). These deflections may have been underestimated due to wind tunnel blockage. Using a 1:40 model, the observed flow pattern was consistent with streamwise vortex pairs shed from the upstream lattice edge. Correction factors were derived for different wind directions and reduced deflection in the full-scale data-set by <3°. Instrumental tilt caused a sinusoidal variation in deflection of ca. 2°. The residual deflection (ca. 3°) was attributed to the Tower itself. Correction of the wind-speeds was small (average 1%) therefore it was deduced that flow distortion does not significantly affect the measured wind-speeds and the wind climate statistics are reliable.
Resumo:
The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.
Resumo:
A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.
Resumo:
With a wide range of applications benefiting from dense network air temperature observations but with limitations of costs, existing siting guidelines and risk of damage to sensors, new methods are required to gain a high resolution understanding of the spatio-temporal patterns of urban meteorological phenomena such as the urban heat island or precision farming needs. With the launch of a new generation of low cost sensors it is possible to deploy a network to monitor air temperature at finer spatial resolutions. Here we investigate the Aginova Sentinel Micro (ASM) sensor with a bespoke radiation shield (together < US$150) which can provide secure near-real-time air temperature data to a server utilising existing (or user deployed) Wireless Fidelity (Wi-Fi) networks. This makes it ideally suited for deployment where wireless communications readily exist, notably urban areas. Assessment of the performance of the ASM relative to traceable standards in a water bath and atmospheric chamber show it to have good measurement accuracy with mean errors < ± 0.22 °C between -25 and 30 °C, with a time constant in ambient air of 110 ± 15 s. Subsequent field tests of it within the bespoke shield also had excellent performance (root-mean-square error = 0.13 °C) over a range of meteorological conditions relative to a traceable operational UK Met Office platinum resistance thermometer. These results indicate that the ASM and bespoke shield are more than fit-for-purpose for dense network deployment in urban areas at relatively low cost compared to existing observation techniques.
Resumo:
In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.
Resumo:
Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals.