839 resultados para Selective Breeding
Resumo:
Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation.
Resumo:
The objectives of this work were to analyze theoretical genetic gains of maize due to recurrent selection among full-sib and half-sib families, obtained by Design I, Full-Sib Design and Half-Sib Design, and genotypic variability and gene loss with long term selection. The designs were evaluated by simulation, based on average estimated gains after ten selection cycles. The simulation process was based on seven gene systems with ten genes (with distinct degrees of dominance), three population classes (with different gene frequencies), under three environmental conditions (heritability values), and four selection strategies. Each combination was repeated ten times, amounting to 25, 200 simulations. Full-sib selection is generally more efficient than half-sib selection, mainly with favorable dominant genes. The use of full-sib families derived by Design I is generally more efficient than using progenies obtained by Full-Sib Design. Using Design I with 50 males and 200 females (effective size of 160) did not result in improved populations with minimum genotypic variability. In the populations with lower effective size (160 and 400) the loss of favorable genes was restricted to recessive genes with reduced frequencies.
Resumo:
Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.
Resumo:
Acute pancreatitis can complicate non-selective transcatheter arterial embolization of hepatocellular carcinoma with an incidence ranging from 1,7% (acute clinical pancreatitis) to 40% (biological pancreatitis). This complication is thought to be related to embolization of extrahepatic arterial collaterals.We report herein a case of acute clinical pancreatitis developing within 24 hours after a second course of selective transcatheter arterial chemo-embolization into the proper hepatic artery. Neither anatomical arterial variation nor particular risk factor for acute pancreatitis could be identified. This complication is unusual after selective arterial embolization. Because it may clinically mimick a postembolization syndrome, dosage of serum pancreatic enzymes should be performed systematically in case of abdominal pain following chemoembolization.
Resumo:
This document represents a substantial attempt to survey the literature of labor negotiations as it relates to the faculty in higher education.
Resumo:
The objective of this work was to assess root traits of 19 common bean genotypes, used in breeding programs for disease resistance. Genotypes DOR 364 and G 19833 were used as deep and shallow basal root checks, respectively. The number of whorls and basal roots were assessed on five-day old seedlings grown in germination paper. Growth pouch studies were conducted to evaluate basal root gravitropism and lateral root length from primary roots, in seven-day old seedlings. The following root gravitropic traits were estimated: basal growth angle, shallow basal root length (localized in the top 2 cm), and relative shallow basal root growth. Number of whorls varied from 1.47 to 3.07, and number of basal roots ranged from 5.67 (genotype TO) to 12.07 (cultivar Jalo MG-65). Cultivars BRS MG Talismã, Carioca, BRS Pioneiro, and Diamante Negro exhibited shallow basal roots, while genotypes Vi-10-2-1, TU, AB 136, and México 54 showed deep basal roots. Cultivar Jalo MG-65 showed more lateral roots from the primary root than the other genotypes. Genotypes used on common bean breeding programs for disease resistance have great variability on basal and primary root traits.
Resumo:
Abstract
Resumo:
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.
Resumo:
Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.
Resumo:
The objective of this work was to estimate the genetic parameters and variability among accessions (half-sib families) of physic nut (Jatropha curcas) during the early stages of development. For this study, 110 accessions in the first year of development of the physic nut germplasm bank, maintained at Embrapa Cerrados, DF, Brazil, were evaluated in situ. The experiment was established in a randomized complete block design, with two replicates and five plants per plot arranged in rows at 4x2 m spacing. Grain yield, total number of branches per plant, plant height, stem diameter, canopy projection on the row, canopy projection between rows, canopy volume, number of days until first flowering and height of the first inflorescence were evaluated. Estimates of vegetative genetic parameters showed the existence of genetic variability in the physic nut germplasm bank. Physic nut accessions of the germplasm bank were grouped into five similarity groups based on character divergence. Although preliminary, the obtained results are promising for showing potential for Jatropha improvement with selective efficiency.
Resumo:
Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.
Resumo:
OBJECTIVE: The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. METHODS: The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. RESULTS: Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. CONCLUSIONS: These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice.
Resumo:
Several hypotheses have been elaborated to account for the evolutionary decay commonly observed in full-fledged Y chromosomes. Enhanced drift, background selection and selective sweeps, which are expected to result from reduced recombination, may all share responsibilities in the initial decay of proto-Y chromosomes, but little empirical information has been gathered so far. Here we take advantage of three markers that amplify on both of the morphologically undifferentiated sex chromosomes of the European tree frog (Hyla arborea) to show that recombination is suppressed in males (the heterogametic sex) but not in females. Accordingly, genetic variability is reduced on the Y, but in a way that can be accounted for by merely the number of chromosome copies per breeding pair, without the need to invoke background selection or selective sweeps.
Resumo:
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.