910 resultados para Secure Multiparty Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time parallel computation of histograms using an array of pipelined cells is proposed and prototyped in this paper with application to consumer imaging products. The array operates in two modes: histogram computation and histogram reading. The proposed parallel computation method does not use any memory blocks. The resulting histogram bins can be stored into an external memory block in a pipelined fashion for subsequent reading or streaming of the results. The array of cells can be tuned to accommodate the required data path width in a VLSI image processing engine as present in many imaging consumer devices. Synthesis of the architectures presented in this paper in FPGA are shown to compute the real-time histogram of images streamed at over 36 megapixels at 30 frames/s by processing in parallel 1, 2 or 4 pixels per clock cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many modern statistical applications involve inference for complex stochastic models, where it is easy to simulate from the models, but impossible to calculate likelihoods. Approximate Bayesian computation (ABC) is a method of inference for such models. It replaces calculation of the likelihood by a step which involves simulating artificial data for different parameter values, and comparing summary statistics of the simulated data with summary statistics of the observed data. Here we show how to construct appropriate summary statistics for ABC in a semi-automatic manner. We aim for summary statistics which will enable inference about certain parameters of interest to be as accurate as possible. Theoretical results show that optimal summary statistics are the posterior means of the parameters. Although these cannot be calculated analytically, we use an extra stage of simulation to estimate how the posterior means vary as a function of the data; and we then use these estimates of our summary statistics within ABC. Empirical results show that our approach is a robust method for choosing summary statistics that can result in substantially more accurate ABC analyses than the ad hoc choices of summary statistics that have been proposed in the literature. We also demonstrate advantages over two alternative methods of simulation-based inference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) is a popular family of algorithms which perform approximate parameter inference when numerical evaluation of the likelihood function is not possible but data can be simulated from the model. They return a sample of parameter values which produce simulations close to the observed dataset. A standard approach is to reduce the simulated and observed datasets to vectors of summary statistics and accept when the difference between these is below a specified threshold. ABC can also be adapted to perform model choice. In this article, we present a new software package for R, abctools which provides methods for tuning ABC algorithms. This includes recent dimension reduction algorithms to tune the choice of summary statistics, and coverage methods to tune the choice of threshold. We provide several illustrations of these routines on applications taken from the ABC literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel cryptography method based on the Lorenz`s attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.