385 resultados para Savanna
Resumo:
Conflicting perceptions of past and present rangeland condition and limited historical data have led to debate regarding the management of vegetation in pastoral landscapes both internationally and in Australia. In light of this controversy we have sought to provide empirical evidence to determine the trajectory of vegetational change in a semi-arid rangeland for a significant portion of the 20th century using a suite of proxy measures. Ambathala Station, approximately 780 km west of Brisbane, in the semi-arid rangelands of south-western Queensland, Australia. We excavated stratified deposits of sheep manure which had accumulated beneath a shearing shed between the years 1930 and 1995. Multi-proxy data, including pollen and leaf cuticle analyses and analysis of historical aerial photography were coupled with a fine resolution radiocarbon chronology to generate a near annual history of vegetation on the property and local area. Aerial photography indicates that minor (< 5%) increases in the density of woody vegetation took place between 1951 and 1994 in two thirds of the study area not subjected to clearing. Areas that were selectively or entirely cleared prior to the 1950s (approximately 16% of the study area) had recovered to almost 60% of their original cover by the 1994 photo period. This slight thickening is only partially evident from pollen and leaf cuticle analyses of sheep faeces. Very little change in vegetation is revealed over the nearly 65 years based on the relative abundances of pollen taxonomic groups. Microhistological examination of sheep faeces provides evidence of dramatic changes in sheep diet. The majority of dietary changes are associated with climatic events of sustained above-average rainfall or persistent drought. Most notable in the dietary analysis is the absence of grass during the first two decades of the record. In contrast to prevailing perceptions and limited research into long-term vegetation change in the semi-arid areas of eastern Australia, the record of vegetation change at the Ambathala shearing shed indicates only a minor increase in woody vegetation cover and no decrease in grass cover on the property over the 65 years of pastoral activity covered by the study. However, there are marked changes in the abundance of grass cuticles in sheep faeces. The appearance and persistence of grass in sheep diets from the late 1940s can be attributed to the effects of periods of high rainfall and possibly some clearing and thinning of vegetation. Lower stock numbers may have allowed grass to persist through later drought years. The relative abundances of major groups of plant pollen have not changed significantly over the past 65 years.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.
Resumo:
The influence of hydrological dynamics on vegetation distribution and the structuring of wetland environments is of growing interest as wetlands are modified by human action and the increasing threat from climate change. Hydrological properties have long been considered a driving force in structuring wetland communities. We link hydrological dynamics with vegetation distribution across Everglades National Park (ENP) using two publicly available datasets to study the probability structure of the frequency, duration, and depth of inundation events along with their relationship to vegetation distribution. This study is among the first to show hydrologic structuring of vegetation communities at wide spatial and temporal scales, as results indicate that the percentage of time a location is inundated and its mean depth are the principal structuring variables to which individual communities respond. For example, sawgrass, the most abundant vegetation type within the ENP, is found across a wide range of time inundated percentages and mean depths. Meanwhile, other communities like pine savanna or red mangrove scrub are more restricted in their distribution and found disproportionately at particular depths and inundations. These results, along with the probabilistic structure of hydropatterns, potentially allow for the evaluation of climate change impacts on wetland vegetation community structure and distribution.
Resumo:
Although Mauritia flexuosa (Arecaceae) plays a pivotal role in the ecology and economy of the Amazon, and occurs in a variety of habitats, little is known about the influence of habitat on the reproductive biology of this palm. My dissertation focuses on the reproductive biology of M. flexuosa in three habitats in Roraima, Brazil: undisturbed forest, undisturbed forest-savanna ecotone, and savanna disturbed by plantations of the exotic tree, Acacia mangium. First, I calculated sex ratios and linked precipitation patterns with phenology. Sex ratios were female-biased. Precipitation was negatively associated with flowering, and positively associated with fruiting. Habitat appears to have no significant influence on phenology of M. flexuosa, although short-term climate variation may affect phenology of this species. Second, I examined floral biology, observed floral visitors, and performed exclusion experiments to determine the pollination system of M. flexuosa. Fruit set did not differ significantly between the visitor exclusion treatment and the control, but was significantly lowest in the wind + visitor exclusion treatment, suggesting that this dioecious palm is anemophilous, independent of habitat. Third, I identified the abiotic and biotic factors explaining variation in fruit mass, seed mass, seed number per fruit, and total fruit yield among habitats. Soil moisture and flooding during the wet season were the best predictors of fruit and seed output. The number of leaves, diameter at breast height, and height were all accurate predictors of reproductive output, but crown volume did not accurately predict fruit yields. Results re-evaluate traditional assumptions about wind-pollination in the tropics, and highlight abiotic and biotic factors responsible for variation in reproductive output of M. flexuosa, with implications for effective management of this palm. Finally, I interviewed harvesters and vendors to document the traditional knowledge and market dynamics of the fruit of M. flexuosa, buriti. Traditional knowledge corroborated results from scientific studies. Vendors argued that the price of buriti must increase, and must fluctuate with varying supply. With appropriate economic incentives to vendors/harvesters, Roraima may expand its market infrastructure for buriti, effectively stimulating the regional economy and practicing sustainable harvesting.
Resumo:
The Amazon savannas occur as isolated patches throughout extensive areas of forest in the states of Amapá, Amazonas, Pará, and Roraima. There is a considerable variation in the composition of anuran assemblages in the localities and phytophysiognomies of Amazon savannas and given the absence of studies on reproductive behavior, a systematic and geographically wide sampling has been carried out in the Amapá savanna, located in the Eastern Amazon. The study was conducted in a savanna area in the state of Amapá to examine the composition, ecology, and reproductive behavior of anuran amphibians. We carried out 24 field trips in each phytophysiognomy (gramineous-woody savana, gramineous-herbaceous-woody savana, park savana, and arboreal savanna); for analysis of reproductive behavior observations were made during the period January to December 2013, lasting four consecutive days. Samples were collected by active and acoustic search along 20 plots of 100x50 meters. Twenty-one anuran species were recorded, of which four are new records for the state of Amapá: Dendropsophus walfordi, Scinax fuscomarginatus, Pseudopaludicola boliviana e Elachistocleis helianneae. The KruskalWallis ANOVA revealed significant differences between richness and species diversity in the phytophysiognomies (p < 0.05). The Bray-Curtis similarity coefficient divided the phytophysiognomies into three groups: arboreal savana, gramineous-woody savanna and gramineous-herbaceous-woody savanna, and park savanna. According to the non-metric multidimensional scaling, the structure of the anuran community resulted in a separation into three phytophysiognomies, with significant differences in the structure of communities (ANOSIM, R = 0.823; p < 0.001). In the study of community ecology, the results obtained for spatial, temporal, and trophic niche breadth suggest that the assemblage of anurans of the Amapá savanna is not composed of predominantly generalist species. Also, the presence of other specialist anurans may explain the processes of speciation associated with the isolation of habitats, resulting in heterogeneity and spatial discontinuity in the phytophysiognomies with open formations. The null model analysis revealed that the community is structured based on temporal and trophic niche, indicating a significant influence of contemporary ecological factors on the assemblage. The absence of structure based on spatial niche might be explained by the spatial segregation in the distribution and occupation of anurans in the different phytophysiognomies of the Amapá savanna. Regarding the reproductive behavior of anurans, 11 species were classified as having a long breeding season, intrinsically associated with the rainy season and the reproductive mode of most species that lay egg clutches in lentic water bodies. Six reproductive modes were recorded and parental care was observed in Leptodactylus macrosternum and L. podicipinus, whose reproductive mode is characterized by foam nests. Regarding behavioral reproductive strategies, calling males were observed in all species of anurans, satellite males were recorded only for D. walfordi, Hypsiboas multifasciatus, S. nebulosus and S. fuscomarginatus; active search for females was observed for Phyllomedusa hypochondrialis and L. fuscus, and male displacement was recorded only for Rhinella major and R. margaritifera. Of the reproductive behaviors observed, throat and vocal sac display is associated with courtship and territorial behavior exhibited by males. In addition to courtship behavior, visual signals associated with courtship strategies were recorded for the anurans of the Amapá savanna.
Resumo:
Capparaceae comprises 25 genera and 480 species, of which 110 are included in 18 genera in Neotropics. Its distribution is pantropical with high frequency in seasonally dry environments. Its representatives are woody, shrubs and rarely wines, with simple leave or compound 3-foliolate, shorts and deciduous floral bracts, tetramerous and nocturnal flowers with exserts and numerous stamens, ovary supero on a gynophore and fleshy fruits, dehiscents or indehiscentes. For Brazil, 12 genera and 28 species are recorded and 12 of that are endemic to the country, occurring preferentially in vegetation of savanna estépica s.str., seasonal semideciduos forest and restinga. This work shows two chapters. In the first chapter, the distributions patterns of the species occurring in the brazilian semi-arid region and their distribution intra Caatinga are discussed. The distribution patterns were determined from a review of the distribution of species in herbaria collections and supplemented with data obtained from specific bibliography about the family. A map containing 1 × 1 grid cells was used to evaluate the richness, collection efforts and floristic similarity of the species intra Caatinga. Six genera and eight species were registered in Caatinga. Four species are endemic to Brazil, with only one endemic to Caatinga, and the other four are widespread in Neotropics. Four distribution patterns were observed: restricted to the NE, broad and continuous in Brazil, disjunct and neotropical. All the species were recorded in Bahia, state with the highest species richness per grid cell and also remarkable sampling efforts species of the family. The state of Piauí presents priority areas for further collection of Capparaceae, due to low family representation in the state. The floristic similarity analysis intra Caatinga was low, 22 %, probably due to a few species of the family in the region and the wide distribution of the same. The second chapter presents the Capparaceae of flora to Rio Grande do Norte (RN), since the state has a little-known flora, with specific studies. Through collections in the state and herbaria review, five genera and six species of Capparaceae were recorded in RN: Capparidastrum (1 spp.); Crateva (1 spp.); Cynophalla (2 spp.); Mesocapparis (1 spp.) and Neocalyptrocalyx (1 spp.). Capparidastrum frondosum and Mesocapparis lineata are new records for the state. An identification key, descriptions and images, comments on the biology of the species and protected areas where they occur are showed.
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
To better understand Holocene vegetation and hydrological changes in South Africa, we analyzed pollen and microcharcoal records of two marine sites GeoB8331 and GeoB8323 from the Namaqualand mudbelt offshore the west coast of South Africa covering the last 9900 and 2200 years, respectively. Our data corroborate findings from literature that climate developments apparently contrast between the summer rainfall zone (SRZ) and winter rainfall zone (WRZ) over the last 9900 years, especially during the early and middle Holocene. During the early Holocene (9900-7800 cal.yr BP), a minimum of grass pollen suggests low summer rainfall in the SRZ, and the initial presence of Renosterveld vegetation indicates relatively wet conditions in the WRZ. Towards the middle Holocene (7800-2400 cal. yr BP), a rather moist savanna/grassland rich in grasses suggests higher summer rainfall in the SRZ resulting from increased austral summer insolation and a decline of fynbos vegetation accompanied by an increasing Succulent Karoo vegetation in the WRZ possibly suggests a southward shift of the Southern Hemisphere westerlies. During the last 2200 years, a trend towards higher aridity was observed for the SRZ, while the climate in the WRZ remained relatively stable. The Little Ice Age (ca. 700-200 cal. yr BP) was rather cool in both rainfall zones and drier in the SRZ while wetter in the WRZ.
Resumo:
Palynological data of the marine core M 16415-2 show latitudinal shifts of the northern fringe of the tropical rain forest in north-west Africa during the last 700 ka. Savanna and dry open forest expanded southwards and tropical rain forest expanded northwards during dry and humid periods, respectively. Until 220 ka B.P., the tropical rain forest probably kept its zonal character in West Africa during glacials and interglacials. It is only during the last two glacial periods that the rain forest possibly fragmented into refugia. Throughout the Brunhes chron, pollen and spore transport was mainly by trade winds.
Resumo:
Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane d13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the d13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary d13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4 per mil to -26.5 per mil) were generally within the range of d13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the d13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using d13C values from both C3 and C4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the fC3 values as the minimum and maximum d13C values are approached, and a hyperbolic function that takes into account the differences between C3 and C4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed d13C values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert d13C measurements on sedimentary n-alkanes directly into reconstructions of C3 vegetation cover.
Resumo:
The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, 2015.
Resumo:
Studies on soils of forest islands within the savanna domain are key for understanding processes of landscape formation and evolution. We characterized the morphological, physical and chemical properties of soils at four different forest fragments that occur in the savanna-forest mosaic of northeastern Roraima, north Amazonia. The methodology was based on transects crossing the entire island, from east-west and northsouth direction, digging up five soil profiles for sampling and classification. In addition, the neighboring savannas were also sampled following the same strategy, at 100 m long transects departing from the border, allowing comparisons to be made. Latosols were the dominant soil class in all four islands, followed by Ultisols and Plinthosols. All soils were dystric, with low CEC and acid. Better chemical and physical conditions were observed in forested soils compared with surrounding savannas, in a given soil class. Thus, in spite of no variation on soil class at different phytophysionomies at a given gradient, specific chemical and physical attributes were significantly varied, exerting a positive effect for the establishment of forest vegetation. Despite their occurrence side-by-side in the savanna-forest mosaic, the present-day climate agrees with the existence of savanna in the flat landforms, whereas forest islands are conditioned by subtle, yet significant, soil physico-chemical variations, with no need to invoke any paleoclimate for explaining this relationship. Further in depth studies may contribute for testing the hypothesis that Quaternary shifts of the expansion and contraction of forest may represent paleoclimate relicts isolated within the savanna domain.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Programa de Pós-Graduação em Tecnologia Ambiental e Recursos Hídricos, 2015.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, Programa de Pós-Graduação em Ciências Florestais, 2016.