373 resultados para Sasakian manifolds
Resumo:
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Immersions of a differentiable m-manifold M in a differentiable n-manifold N, 2n > 3m+1, are classified up to regular homotopy by the homotopy classes of fibre maps F: T(M) ----> T(N) such that F(-X)=-F(X) and F(X) is nonzero of X is nonzero.
Resumo:
Many manifolds that do not admit Anosov diffeomorphisms are constructed. For example: the Cartesian product of the Klein bottle and a torus.
Resumo:
We classify the N = 4 supersymmetric AdS(5) backgrounds that arise as solutions of five-dimensional N = 4 gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/ (U(1) x SU(m)) and discuss our results regarding holographically dual N = 2 SCFTs and their conformal manifolds.
Resumo:
The Hermitian Yang–Mills equations on certain vector bundles over Calabi–Yau cones can be reduced to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with a unique gauge transformation, to the holomorphicity condition alone.
Resumo:
International audience
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds
Resumo:
Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization
Resumo:
La Geometría Algebraica Clásica puede ser definida como el estudio de las variedades cuasiafines y cuasiproyectivas sobre un campo k, y en particular, del problema de su clasificación salvo isomorfismos -- Estas variedades son, por definición, subconjuntos de los n-espacios afínes y de los n-espacios proyectivos -- Es útil tener a disposición una definición intrínseca de estos objetos, es decir, independiente de un espacio ambiente -- En este artículo se muestra como la noción de Espacio Anillado es la clave para formular estas definiciones y reformular el problema de clasificación
Resumo:
In this paper, dedicated to Prof. Lou Kauffman, we determine the Thurston’s geometry possesed by any Seifert fibered conemanifold structure in a Seifert manifold with orbit space (Formula presented.) and no more than three exceptional fibers, whose singular set, composed by fibers, has at most three components which can include exceptional or general fibers (the total number of exceptional and singular fibers is less than or equal to three). We also give the method to obtain the holonomy of that structure. We apply these results to three families of Seifert manifolds, namely, spherical, Nil manifolds and manifolds obtained by Dehn surgery on a torus knot (Formula presented.). As a consequence we generalize to all torus knots the results obtained in [Geometric conemanifolds structures on (Formula presented.), the result of (Formula presented.) surgery in the left-handed trefoil knot (Formula presented.), J. Knot Theory Ramifications 24(12) (2015), Article ID: 1550057, 38pp., doi: 10.1142/S0218216515500571] for the case of the left handle trefoil knot. We associate a plot to each torus knot for the different geometries, in the spirit of Thurston.
Resumo:
We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.