958 resultados para SUPEROXIDE ANION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutase (SOD) catalyzes the conversion of superoxide radical to hydrogen peroxide. Periplasmic localization of bacterial Cu,Zn-SOD has suggested a role of this enzyme in defense against extracellular phagocyte-derived reactive oxygen species. Sequence analysis of regions flanking the Salmonella typhimurium sodC gene encoding Cu,Zn-SOD demonstrates significant homology to λ phage proteins, reflecting possible bacteriophage-mediated horizontal gene transfer of this determinant among pathogenic bacteria. Salmonella deficient in Cu,Zn-SOD has reduced survival in macrophages and attenuated virulence in mice, which can be restored by abrogation of either the phagocyte respiratory burst or inducible nitric oxide synthase. Moreover, a sodC mutant is extremely susceptible to the combination of superoxide and nitric oxide. These observations suggest that SOD protects periplasmic or inner membrane targets by diverting superoxide and limiting peroxynitrite formation, and they demonstrate the ability of the respiratory burst and nitric oxide synthase to synergistically kill microbial pathogens in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced Cl− efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl− efflux via two mechanisms. The first is a direct effect of pHc on Cl− efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl− efflux. Cl− efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl− efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl− efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to identify the enzymatic mechanism responsible for the synthesis of reactive oxygen species produced during the hypersensitive response, preparations of rose (Rosa damascena) cell plasma membranes, partially solubilized plasma membrane protein, and cytosol were assayed for the NADH- and NADPH-dependent synthesis of superoxide using assays for the reduction of cytochrome c (Cyt c), assays for the reduction of nitroblue tetrazolium, and assays for the chemiluminescence of N,N′-dimethyl-9,9′-biacridium dinitrate (lucigenin). Each assay ascribed the highest activity to a different preparation: the Cyt c assay to cytosol, the nitroblue tetrazolium assay to plasma membrane, and the lucigenin assay to the partially solubilized plasma membrane protein (with NADH). This suggests that no two assays measure the same set of enzymes and that none of the assays is suitable for comparisons of superoxide synthesis among different cell fractions. With the plasma membrane preparation, the presence of large amounts of superoxide-dismutase-insensitive Cyt c reductase confounded attempts to use Cyt c to measure superoxide synthesis. With the partially solubilized membrane protein, direct reduction of lucigenin probably contributed to the chemiluminescence. Superoxide synthesis detected with lucigenin should be confirmed by superoxide-dismutase-sensitive Cyt c reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between the production of reactive oxygen species and the hypersensitive response (HR) of tobacco (Nicotiana tabacum L.) toward an incompatible race of the Oomycete Phytophthora parasitica var nicotianae has been investigated. A new assay for superoxide radical (O2−) production based on reduction of the tetrazolium dye sodium,3′-(1-[phenylamino-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT) has enabled the quantitative estimation of perhydroxyl/superoxide radical acid-base pair (HO2·/O2−) production during the resistant response. Tobacco suspension cells were inoculated with zoospores from compatible or incompatible races of the pathogen. Subsequent HO2·/O2− production was monitored by following the formation of XTT formazan. In the incompatible interaction only, HO2·/O2− was produced in a minor burst between 0 and 2 h and then in a major burst between 8 and 10 h postinoculation. During this second burst, rates of XTT reduction equivalent to a radical flux of 9.9 × 10−15 mol min−1 cell−1 were observed. The HO2·/O2− scavengers O2− dismutase and Mn(III)desferal each inhibited dye reduction. An HR was observed in challenged, resistant cells immediately following the second burst of radical production. Both scavengers inhibited the HR when added prior to the occurrence of either radical burst, indicating that O2− production is a necessary precursor to the HR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloroplast-targeted overexpression of an Fe superoxide dismutase (SOD) from Arabidopsis thaliana resulted in substantially increased foliar SOD activities. Ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were similar in the leaves from all of the lines, but dehydroascorbate reductase activity was increased in the leaves of the FeSOD transformants relative to untransformed controls. Foliar H2O2, ascorbate, and glutathione contents were comparable in all lines of plants. Irradiance-dependent changes in net CO2 assimilation and chlorophyll a fluorescence quenching parameters were similar in all lines both in air (21% O2) and at low (1%) O2. CO2-response curves for photosynthesis showed similar net CO2-exchange characteristics in all lines. In contrast, values of photochemical quenching declined in leaves from untransformed controls at intercellular CO2 (Ci) values below 200 μL L−1 but remained constant with decreasing Ci in leaves of FeSOD transformants. When the O2 concentration was decreased from 21 to 1%, the effect of FeSOD overexpression on photochemical quenching at limiting Ci was abolished. At high light (1000 μmol m−2 s−1) a progressive decrease in the ratio of variable (Fv) to maximal (Fm) fluorescence was observed with decreasing temperature. At 6oC the high-light-induced decrease in the Fv/Fm ratio was partially prevented by low O2 but values were comparable in all lines. Methyl viologen caused decreased Fv/Fm ratios, but this was less marked in the FeSOD transformants than in the untransformed controls. These observations suggest that the rate of superoxide dismutation limits flux through the Mehler-peroxidase cycle in certain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maize (Zea mays) superoxide dismutase genes Sod4 and Sod4A are highly similar in structure but each responds differentially to environmental signals. We examined the effects of the hormone abscisic acid (ABA) on the developmental response of Sod4 and Sod4A. Although both Sod4 and Sod4A transcripts accumulate during late embryogenesis, only Sod4 is up-regulated by ABA and osmotic stress. Accumulation of Sod4 transcript in response to osmotic stress is a consequence of increased endogenous ABA levels in developing embryos. Sod4 mRNA is up-regulated by ABA in viviparous-1 mutant embryos. Sod4 transcript increases within 4 h with ABA not only in developing embryos but also in mature embryos and in young leaves. Sod4A transcript is up-regulated by ABA only in young leaves, but neither Sod4 nor Sod4A transcripts changed in response to osmotic stress. Our data suggest that in leaves Sod4 and Sod4A may respond to ABA and osmotic stress via alternate pathways. Since the Sod genes have a known function, we hypothesize that the increase in Sod mRNA in response to ABA is due in part to ABA-mediated metabolic changes leading to changes in oxygen free radical levels, which in turn lead to the induction of the antioxidant defense system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain of Synechococcus sp. strain PCC 7942 with no functional Fe superoxide dismutase (SOD), designated sodB−, was characterized by its growth rate, photosynthetic pigments, and cyclic photosynthetic electron transport activity when treated with methyl viologen or norflurazon (NF). In their unstressed conditions, both the sodB− and wild-type strains had similar chlorophyll and carotenoid contents and catalase activity, but the wild type had a faster growth rate and higher cyclic electron transport activity. The sodB− was very sensitive to methyl viologen, indicating a specific role for the FeSOD in protection against superoxide generated in the cytosol. In contrast, the sodB− mutant was less sensitive than the wild type to oxidative stress imposed with NF. This suggests that the FeSOD does not protect the cell from excited singlet-state oxygen generated within the thylakoid membrane. Another up-regulated antioxidant, possibly the MnSOD, may confer protection against NF in the sodB− strain. These results support the hypothesis that different SODs have specific protective functions within the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 μm NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes, but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deleterious effect of superoxide radicals on cell growth and survival is predominately caused by rapid oxidation of labile [Fe-S] clusters in proteins. Oxidation of these clusters releases Fe(II) ions, which participate in Fenton chemistry that damages DNA. Here it is shown that elevated levels of the YggX protein increase the resistance of Salmonella enterica to superoxide stress, reverse enzymatic defects attributed to oxidized [Fe-S] clusters, and decrease the spontaneous mutation frequency. The data are consistent with a model in which YggX protects protein [Fe-S] clusters from oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of mutant human and yeast copper-zinc superoxide dismutases has been prepared, with mutations corresponding to those found in familial amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease). These proteins have been characterized with respect to their metal-binding characteristics and their redox reactivities. Replacement of Zn2+ ion in the zinc sites of several of these proteins with either Cu2+ or Co2+ gave metal-substituted derivatives with spectroscopic properties different from those of the analogous derivative of the wild-type proteins, indicating that the geometries of binding of these metal ions to the zinc site were affected by the mutations. Several of the ALS-associated mutant copper-zinc superoxide dismutases were also found to be reduced by ascorbate at significantly greater rate than the wild-type proteins. We conclude that similar alterations in the properties of the zinc binding site can be caused by mutations scattered throughout the protein structure. This finding may help to explain what is perhaps the most perplexing question in copper-zinc superoxide dismutase-associated familial ALS-i.e., how such a diverse set of mutations can result in the same gain of function that causes the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We expressed the 52-kDa integral membrane domain (B3mem) of the human erythrocyte anion transporter (band 3; AE1) in a protease-deficient strain of the yeast Saccharomyces cerevisiae under the control of the inducible GAL10-CYC1 promoter. Immunoblots of total protein from transformed yeast cells confirmed that the B3mem polypeptide was overexpressed shortly after induction with galactose. Cell surface expression of the functional anion transporter was detected by using a simple transport assay to measure stilbene disulfonate-inhibitable chloride influx into intact yeast cells. The B3mem polypeptide was recycled and degraded by the cells with a half-life of approximately 1-3 hr, which led to a steady-state level of expression in exponentially growing cultures. Our data suggest that 5-10% of total B3mem is functionally active at the cell surface at any one time and that overexpression of this anion transport protein does not interfere with cell growth or survival. This is one of only a few reports of the functional expression of a plasma membrane transport protein in the plasma membrane of yeast cells and to our knowledge is the first report of red cell band 3-mediated anion transport at the plasma membrane of cDNA-transformed cells. The cell surface expression system we describe will provide a simple means for future study of the functional properties of band 3 by using site-directed mutagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.