995 resultados para SUBSTRATE-TEMPERATURE
Resumo:
Research on the stability of flavours during high temperature extrusion cooking is reviewed. The important factors that affect flavour and aroma retention during the process of extrusion are illustrated. A substantial number of flavour volatiles which are incorporated prior to extrusion are normally lost during expansion, this is because of steam distillation. Therefore, a general practice has been to introduce a flavour mix after the extrusion process. This extra operation requires a binding agent (normally oil), and may also result in a non-uniform distribution of the flavour and low oxidative stability of the flavours exposed on the surface. Therefore, the importance of encapsulated flavours, particularly the beta -cyclodextrin-flavour complex, is highlighted in this paper.
Resumo:
A new method to extract MOSFET's threshold voltage VT by measurement of the gate-to-substrate capacitance C-gb of the transistor is presented. Unlike existing extraction methods based on I-V data, the measurement of C-gb does not require de drain current to now between drain and source thus eliminating the effects of source and drain series resistance R-S/D, and at the same time, retains a symmetrical potential profile across the channel. Experimental and simulation results on devices with different sizes are presented to justify the proposed method.
Resumo:
Blood-feeding parasites, including schistosomes, hookworms, and malaria parasites, employ aspartic proteases to make initial or early cleavages in ingested host hemoglobin. To better understand the substrate affinity of these aspartic proteases, sequences were aligned with and/or three-dimensional, molecular models were constructed of the cathepsin D-like aspartic proteases of schistosomes and hookworms and of plasmepsins of Plasmodium falciparum and Plasmodium vivax, using the structure of human cathepsin D bound to the inhibitor pepstatin as the template. The catalytic subsites S5 through S4' were determined for the modeled parasite proteases. Subsequently, the crystal structure of mouse renin complexed with the nonapeptidyl inhibitor t-butyl-CO-His-Pro-Phe-His-Leu [CHOHCH2]Leu-Tyr-Tyr-Ser-NH2 (CH-66) was used to build homology models of the hemoglobin-degrading peptidases docked with a series of octapeptide substrates. The modeled octapeptides included representative sites in hemoglobin known to be cleaved by both Schistosoma japonicum cathepsin D and human cathepsin D, as well as sites cleaved by one but not the other of these enzymes. The peptidase-octapeptide substrate models revealed that differences in cleavage sites were generally attributable to the influence of a single amino acid change among the P5 to P4' residues that would either enhance or diminish the enzymatic affinity. The difference in cleavage sites appeared to be more profound than might be expected from sequence differences in the enzymes and hemoglobins. The findings support the notion that selective inhibitors of the hemoglobin-degrading peptidases of blood-feeding parasites at large could be developed as novel anti-parasitic agents.
Resumo:
Rheodytes leukops is a bimodally respiring turtle that extracts oxygen from the water chiefly via two enlarged cloacal bursae that are lined with multi-branching papillae. The diving performance of R. leukops was compared to that of Emydura macquarii, a turtle with a limited ability to acquire aquatic oxygen. The diving performance of the turtles was compared under aquatic anoxia (0 mmHg), hypoxia (80 mmHg) and normoxia (155 mmHg) at 15, 23, and 30degreesC. When averaged across all temperatures the dive duration of R. leukops more than doubled from 22.4 +/- 7.65 min under anoxia to 49.8 +/- 19.29 min under normoxic conditions. In contrast, aquatic oxygen level had no effect on the dive duration of E. macquarii. Dive times for both species were significantly longer at the cooler temperature, and the longest dive recorded for each species was 538 min and 166 min for R. leukops and E. macquarii, respectively. Both species displayed a pattern of many short dives punctuated by occasional long dives irrespective of temperature or oxygen regime. Rheodytes leukops, on average, spent significantly less time (42 +/- 2 sec) at the surface per surfacing event than did E. macquarii (106 +/- 20 sec); however, surface times for both species were not related to either water temperature or oxygen level.
Resumo:
Variation in the growth, survival and change in total biomass (termed biomass increase) of different families of juvenile Penaeus japonicus was investigated over a range of temperatures in controlled laboratory experiments. In the first experiment, the effects of temperature on six families of juveniles were examined over a broad range of temperatures (24 to 30 degreesC). In the second experiment, the effects of temperature on six more families of juveniles were examined over a narrower range of temperatures (27.5 to 31.2 degreesC). Over the broad temperature range, mean growth and biomass increase were highest at 27 degreesC and mean survival was highest at 24 degreesC. Mean growth was lowest at 24 degreesC, whilst survival and biomass increase were lowest at 30 degreesC. However, there was a significant interaction between family and temperature, with some families tolerating a broader range of temperatures than others. As a result, the ranking of families in relation to growth, survival and biomass increase changed at each temperature. This effect was more pronounced for survival than for growth. Over the narrower range, temperature significantly affected growth, survival and biomass increase, but there was no significant interaction between family and temperature. Growth, survival and biomass increase were significantly lower at 31.2 than at 27.5 and 29.2 degreesC. These results suggest that if grow-out conditions for P. japonicus vary by more than a few degrees, interactions between family and temperature could affect the efficiency of selection. The results also suggest that the family x temperature interaction may have a more pronounced effect on survival than on growth. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
Potted lychee trees (cv. Tai so) of varying vegetative flush maturity were grown under a range of temperature regimes and monitored for subsequent shoot structure and development. A combination of low temperature (15/17 or 18/13 degreesC day/night) and high vegetative flush maturity was necessary for floral initiation to occur, Exposure to high temperatures (28/23 degreesC) invariably resulted in the production of vegetative shoots, irrespective of flush maturity. Strong floral initiation was marked by the emergence of terminal particles and accompanying axillary particles. A decrea,;e in vegetative flush maturity or increase in temperature (e.g. 23/18 degreesC) resulted in a decrease in axillary shoot formation and the production of several intermediate shoot structures. These included leafy particles, stunted particles, partially emerged buds and non-emergent swollen buds, often produced on the same tree. At 23/18 degreesC, closer synchronisation of initial flush maturity was required for the production of a consistent shoot-type. Trees with synchronised mature flushes (I-2) at 23/18 degreesC resulted in the production of swollen terminal buds. Healthy trees were maintained in this state for at least 11 months. These results indicate that both temperature and flush maturity can influence subsequent shoot structure of lychee. In the absence of either a strong floral temperature (18/13 degreesC) or strong vegetative temperature (28/23 degreesC), slight differences in initial flush maturity have gteater impact on the type of emerging shoot formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Aims: The aim of this study was to identify, clone and characterize the second amylase of Aeromonas hydrophila JMP636, AmyB, and to compare it to AmyA. Methods and Results: The amylase activity of A. hydrophila JMP636 is encoded by multiple genes. A second genetically distinct amylase gene, amyB, has been cloned and expressed from its own promoter in Escherichia coli. AmyB is a large alpha-amylase of 668 amino acids. Outside the conserved domains of alpha-amylases there is limited sequence relationship between the two alpha-amylases of A. hydrophila JMP636 AmyA and AmyB. Significant (80%) similarity exists between amyB and an alpha-amylase of A. hydrophila strain MCC-1. Differences in either the functional properties or activity under different environmental conditions as possible explanations for multiple copies of amylases in JMP636 is less likely after an examination of several physical properties, with each of the properties being very similar for both enzymes (optimal pH and temperature, heat instability). However the reaction end products and substrate specificity did vary enough to give a possible reason for the two enzymes being present. Both enzymes were confirmed to be alpha-type amylases. Conclusions: AmyB has been isolated, characterized and then compared to AmyA. Significance and Impact of Study: The amylase phenotype is rarely encoded by more than one enzyme within one strain, this study therefore allows the better understanding of the unusual amylase production by A. hydrophila.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
UHT processing of milk and its subsequent storage causes several changes which affect the shelf-life of UHT milk although it remains 'commercially sterile'. These changes include whey protein denaturation, protein-protein interaction, lactose-protein interaction, isomerisation of lactose, Maillard browning, sulphydryl compound formation, formation of a range of carbonyl and other flavoursome compounds, and formation of insoluble substances. They ultimately reduce the quality and limit the shelf life of UHT milk through development of off-flavours, fat separation, age gelation and sedimentation. The extent of these changes depends on many factors, a major one being the type of UHT heating. This review compares the effect heating milk by direct and indirect modes on various aspects of processing and quality of UHT milk.
Resumo:
The rheological behaviour of nine unprocessed Australian honeys was investigated for the applicability of the Williams-Landel-Ferry (WLF) model. The viscosity of the honeys was obtained over a range of shear rates (0.01-40 s(-1)) from 2degrees to 40 degreesC, and all the honeys exhibited Newtonian behaviour with viscosity reducing as the temperature was increased. The honeys with high moisture were of lower viscosity, The glass transition temperatures of the honeys, as measured with a differential scanning calorimeter (DSC), ranged from -40degrees to -46 degreesC, and four models (WLF. Arrhenius, Vogel-Tammann-Fulcher (VTF), and power-law) were investigated to describe the temperature dependence of the viscosity. The WLF was the most suitable and the correlation coefficient averaged 0.999 +/- 0.0013 as against 0.996 +/- 0.0042 for the Arrhenius model while the mean relative deviation modulus was 0-12% for the WLF model and 10-40% for the Arrhenius one. With the universal values for the WLF constants, the temperature dependence of the viscosity was badly predicted. From non-linear regression analysis, the constants of the WLF models for the honeys were obtained (C-1 = 13.7-21.1: C-2 = 55.9-118.7) and are different from the universal values. These WLF constants will be valuable for adequate modeling of the rheology of the honeys, and they can be used to assess the temperature sensitivity of the honeys. (C) 2002 Elsevier Science Ltd. All rights reserved.