947 resultados para SOLUTE-SOLVENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas absorption, the removal of one or more constitutents from a gas mixture, is widely used in chemical processes. In many gas absorption processes, the gas mixture is already at high pressure and in recent years organic solvents have been developed for the process of physical absorption at high pressure followed by low pressure regeneration of the solvent and recovery of the absorbed gases. Until now the discovery of new solvents has usually been by expensive and time consuming trial and error laboratory tests. This work describes a new approach, whereby a solvent is selected from considerations of its molecular structure by applying recently published methods of predicting gas solubility from the molecular groups which make up the solvent molecule. The removal of the acid gases of carbon dioxide and hydrogen sulfide from methane or hydrogen was used as a commercially important example. After a preliminary assessment to identify promising moecular groups, more than eighty new solvent molecules were designed and evaluated by predicting gas solubility. The other important physical properties were also predicted by appropriate theoretical procedures, and a commercially promising new solvent was chosen to have a high solubility for acid gases, a low solubility for methane and hydrogen, a low vapour pressure, and a low viscosity. The solvent chosen, of molecular structure Ch3-COCH2-CH2-CO-CH3, was tested in the laboratory and shown to have physical properties, except for vapour pressures, close to those predicted. That is gas solubilities were within 10% but lower than predicted. Viscosity within 10% but higher than predicted and a vapour pressure significantly lower than predicted. A computer program was written to predict gas solubility in the new solvent at the high pressures (25 bar) used in practice. This is based on the group contribution method of Skold Jorgensen (1984). Before using this with the new solvent, Acetonyl acetone, the method was show to be sufficiently accurate by comparing predicted values of gas solubility with experimental solubilities from the literature for 14 systems up to 50 bar. A test of the commercial potential of the new solvent was made by means of two design studies which compared the size of plant and approximate relative costs of absorbing acid gases by means of the new solvent with other commonly used solvents. These were refrigerated methanol(Rectisol process) and Dimethyl Ether or Polyethylene Glycol(Selexol process). Both studies showed in terms of capital and operating cost some significant advantage for plant designed for the new solvent process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion and convection of a solute suspended in a fluid across porous membranes are known to be reduced compared to those in a bulk solution, owing to the fluid mechanical interaction between the solute and the pore wall as well as steric restriction. If the solute and the pore wall are electrically charged, the electrostatic interaction between them could affect the hindrance to diffusion and convection. In this study, the transport of charged spherical solutes through charged circular cylindrical pores filled with an electrolyte solution containing small ions was studied numerically by using a fluid mechanical and electrostatic model. Based on a mean field theory, the electrostatic interaction energy between the solute and the pore wall was estimated from the Poisson-Boltzmann equation, and the charge effect on the solute transport was examined for the solute and pore wall of like charge. The results were compared with those obtained from the linearized form of the Poisson-Boltzmann equation, i.e.the Debye-Hückel equation. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of a spherical solute through a long circular cylindrical pore filled with an electrolyte solution is studied numerically, in the presence of constant surface charge on the solute and the pore wall. Fluid dynamic analyses were carried out to calculate the flow field around the solute in the pore to evaluate the drag coefficients exerted on the solute. Electrical potentials around the solute in the electrolyte solution were computed based on a mean-field theory to provide the interaction energy between the charged solute and the pore wall. Combining the results of the fluid dynamic and electrostatic analyses, we estimated the rate of the diffusive and convective transport of the solute across the pore. Although the present estimates of the drag coefficients on the solute suggest more than 10% difference from existing studies, depending on the radius ratio of the solute relative to the pore and the radial position of the solute center in the pore, this difference leads to a minor effect on the hindrance factors. It was found that even at rather large ion concentrations, the repulsive electrostatic interaction between the charged solute and the pore wall of like charge could significantly reduce the transport rate of the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new bridge technique for the measurement of the dielectric absorption of liquids and solutions at microwave frequencies has been described and its accuracy assessed. 'l'he dielectric data of the systems studied is discussed in terms of the relaxation processes contributing to the dielectric absorption and the apparent dipole moments. Pyridine, thiophen and furan in solution have a distribution of relaxation times which may be attributed to the small size of the solute molecules relative to the solvent. Larger rigid molecules in solution were characterized by a single relaxation time as would be anticipated from theory. The dielectric data of toluene, ethyl-, isopropyl- and t-butylbenzene as pure liquids and in solution were described by two relaxation times, one identified with molecular re-orientation and a shorter relaxation time.· The subsequent work was investigation of the possible explanations of this short relaxation process. Comparable short relaxation times were obtained from the analysis of the dielectric data of solutions of p-chloro- and p-bromotoluene below 40°C, o- and m-xylene at 25°C and 1-methyl- and 2 methylnaphthalene at 50 C. Rigid molecules of similar shapes and sizes were characterized by a single relaxation time identified with molecular re-orientation. Contributions from a long relaxation process attributed to dipolar origins were reported for solutions of nitrobenzene, benzonitrile and p-nitrotoluene. A short relaxation process of possible dipolar origins contributed to the dielectric absorption of 4-methyl- and 4-t-butylpyridine in cyclohexane at 25°C. It was concluded that the most plausible explanation of the short relaxation process of the alkyl-aryl hydrocarbons studied appears to be intramolecular relaxation about the alkyl-aryl bond. Finally the mean relaxation times of some phenylsubstituted compounds were investigated to evaluate any shortening due to contributions from the process of relaxation about the phenyl-central atom bond. The relaxation times of triphenylsilane and phenyltrimethylsilane were significantly short.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotropic scattering Raman spectra of liquid acetonitrile (AN) solutions of LiBF4 and NaI at various temperatures and concentrations have been investigated. For the first time imaginary as well as real parts of the solvent vibrational correlation functions have been extracted from the spectra. Such imaginary parts are currently an important component of modern theories of vibrational relaxation in liquids. This investigation thus provides the first experimental data on imaginary parts of a correlation function in AN solutions. Using the fitting algorithm we recently developed, statistically confident models for the Raman spectra were deduced. The parameters of the band shapes, with an additional correction, of the ν2 AN vibration (CN stretching), together with their confidence intervals are also reported for the first time. It is shown that three distinct species, with lifetimes greater than ∼10−13 s, of the AN molecules can be detected in solutions containing Li+ and Na+. These species are attributed to AN molecules directly solvating cations; the single oriented and polarised molecules interleaving the cation and anion of a Solvent Shared Ion Pair (SShIP); and molecules solvating anions. These last are considered to be equivalent to the next layer of solvent molecules, because the CN end of the molecule is distant from the anion and thus less affected by the ionic charge compared with the anion situation. Calculations showed that at the concentrations employed, 1 and 0.3 M, there were essentially no other solvent molecules remaining that could be considered as bulk solvent. Calculations also showed that the internuclear distance in these solutions supported the proposal that the ionic entity dominating in solution was the SShIP, and other evidence was adduced that confirmed the absence of Contact Ion Pairs at these concentrations. The parameters of the shape of the vibrational correlation functions of all three species are reported. The parameters of intramolecular anharmonic coupling between the potential surfaces in AN and the dynamics of the intermolecular environment fluctuations and intermolecular energy transfer are presented. These results will assist investigations made at higher and lower concentrations, when additional species and interactions with AN molecules will be present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the effects of salt (sodium iodide) on pristine carbon nanotube (CNT) dispersions in an organic solvent, N-methyl-2-pyrrolidone (NMP). We investigate the molecular-scale mechanisms of ion interactions with the nanotube surface and we show how the microscopic ion-surface interactions affect the stability of CNT dispersions in NMP. In our study we use a combination of fully atomistic Molecular Dynamics simulations of sodium and iodide ions at the CNT-NMP interface with direct experiments on the CNT dispersions. In the experiments we analyze the effects of salt on the stability of the dispersions by photoluminescence (PL) and optical absorption spectroscopy of the samples as well as by visual inspection. By fully atomistic Molecular Dynamics simulations we investigate the molecular-scale mechanisms of sodium and iodide ion interactions with the nanotube surface. Our simulations reveal that both ions are depleted from the CNT surface in the CNT-NMP dispersions mainly due to the two reasons: (1) there is a high energy penalty for the ion partial desolvation at the CNT surface; (2) NMP molecules form a dense solvation layer at the CNT surface that prevents ions to come close to the CNT surface. As a result, an increase of the salt concentration increases the "osmotic" stress in the CNT-NMP system and, thus, decreases the stability of the CNT dispersions in NMP. Direct experiments confirm the simulation results: addition of NaI salt into the NMP dispersions of pristine CNTs leads to precipitation of CNTs (bundle formation) even at very small salt concentration (∼10 -3 mol L -1). In line with the simulation predictions, the effect increases with the increase of the salt concentration. Overall, our results show that dissolved salt ions have strong effects on the stability of CNT dispersions. Therefore, it is possible to stimulate the bundle formation in the CNT-NMP dispersions and regulate the overall concentration of nanotubes in the dispersions by changing the NaI concentration in the solvent. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.