837 resultados para SOLUBLE POLY(PARA-PHENYLENE)S
Resumo:
Stroma mediated wound healing signals may share similarities with the ones produced by tumor's microenvironment and their modulation may impact tumor response to the various anti-cancer treatments including radiation therapy. Therefore we conducted this study, to assess the crosstalk between stromal and carcinoma cells in response to radiotherapy by genetic modulation of the stroma and irradiation. We found that fibroblasts irrespective of their RhoB status do not modulate intrinsic radiosensitivity of TC-1 but produce diffusible factors able to modify tumor cell fate. Then we found that Wt and RhoB deficient fibroblasts stimulated TC-1 migration through distinct mechanisms which are TGF-β1 and MMP-mediated respectively. Lastly, we found that simultaneous irradiation of fibroblasts and TC-1 abrogated the pro-migratory phenotype by repression of TGF-β and MMP secretion. This last result is highly relevant to the clinical situation and suggests that conversely to, the current view; irradiated stroma would not enhance carcinoma migration and could be manipulated to promote anti-tumor immune response.
Resumo:
Given the multiplicity of nanoparticles (NPs), there is a requirement to develop screening strategies to evaluate their toxicity. Within the EU-funded FP7 NanoTEST project, a panel of medically relevant NPs has been used to develop alternative testing strategies of NPs used in medical diagnostics. As conventional toxicity tests cannot necessarily be directly applied to NPs in the same manner as for soluble chemicals and drugs, we determined the extent of interference of NPs with each assay process and components. In this study, we fully characterized the panel of NP suspensions used in this project (poly(lactic-co-glycolic acid)-polyethylene oxide [PLGA-PEO], TiO2, SiO2, and uncoated and oleic-acid coated Fe3O4) and showed that many NP characteristics (composition, size, coatings, and agglomeration) interfere with a range of in vitro cytotoxicity assays (WST-1, MTT, lactate dehydrogenase, neutral red, propidium iodide, (3)H-thymidine incorporation, and cell counting), pro-inflammatory response evaluation (ELISA for GM-CSF, IL-6, and IL-8), and oxidative stress detection (monoBromoBimane, dichlorofluorescein, and NO assays). Interferences were assay specific as well as NP specific. We propose how to integrate and avoid interference with testing systems as a first step of a screening strategy for biomedical NPs.
Resumo:
A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.
Resumo:
Poly(ß,L-malic acid) (PMLA) was made to interact with the cationic anticancer drug Doxorubicin (DOX) in aqueous solution to form ionic complexes with different compositions and an efficiency near to 100%. The PMLA/DOX complexes were characterized by spectroscopy, thermal analysis, and scanning electron microscopy. According to their composition, the PMLA/DOX complexes spontaneously self-assembled into spherical micro or nanoparticles with negative surface charge. Hydrolytic degradation of PMLA/DOX complexes took place by cleavage of the main chain ester bond and simultaneous release of the drug. In vitro drug release studies revealed that DOX delivery from the complexes was favored by acidic pH and high ionic strength
Resumo:
Monte Carlo (MC) simulations have been used to study the structure of an intermediate thermal phase of poly(R-octadecyl ç,D-glutamate). This is a comblike poly(ç-peptide) able to adopt a biphasic structure that has been described as a layered arrangement of backbone helical rods immersed in a paraffinic pool of polymethylene side chains. Simulations were performed at two different temperatures (348 and 363 K), both of them above the melting point of the paraffinic phase, using the configurational bias MC algorithm. Results indicate that layers are constituted by a side-by-side packing of 17/5 helices. The organization of the interlayer paraffinic region is described in atomistic terms by examining the torsional angles and the end-to-end distances for the octadecyl side chains. Comparison with previously reported comblike poly(â-peptide)s revealed significant differences in the organization of the alkyl side chains.
Resumo:
Se ha estudiado la lixiviación de concentrados de cobre mediante cloro-complejos cúpricos, generados in situ por la reacción entre el Cu(II) procedente del cobre soluble del concentrado y cloruro de sodio en medio ácido. Se utilizaron concentrados de cobre provenientes de faenas mineras de Antofagasta, Chile. Se ha efectuado una caracterización química y mineralógica de los concentrados originales. Se ha estudiado el efecto de las siguientes variables, durante la lixiviación: concentración de cloruro, concentración de cobre soluble, tiempo de lixiviación, porcentaje de sólidos y temperatura. Se han caracterizado los residuos sólidos por DRX y microscopia electrónica. Los resultados experimentales indican que es posible obtener disoluciones con contenidos de cobre entre 15 y 35 g/l y de 2 a 5 g/l de acidez libre, con características adecuadas para entrar a la etapa de extracción por solventes. El procedimiento utiliza, solo, reactivos comunes y de muy bajo costo, como NaCl y ácido sulfúrico diluido. La ventaja de este procedimiento consiste en recuperar, a muy bajo coste, la totalidad del cobre soluble y entre 10 y 15% del cobre de sulfuros. El residuo final podría pasar a la pirometalurgia convencional
Resumo:
The wound healing promoting effect of negative wound pressure therapies (NPWT) takes place at the wound interface. The use of bioactive substances at this site represents a major research area for the development of future NPWT therapies. To assess wound healing kinetics in pressure ulcers treated by NPWT with or without the use of a thin interface membrane consisting of poly-N-acetyl glucosamine nanofibers (sNAG) a prospective randomized clinical trial was performed. The safety of the combination of NPWT and sNAG was also assessed in patients treated with antiplatelet drugs. In the performed study, the combination of NPWT and sNAG in 10 patients compared to NPWT alone in 10 patients promoted wound healing due to an improved contraction of the wound margins (p = 0.05) without a change in wound epithelization. In 6 patients treated with antiplatelet drugs no increased wound bleeding was observed in patients treated by NPWT and sNAG. In conclusion, the application of thin membranes of sNAG nanofibers at the wound interface using NPWT was safe and augmented the action of NPWT leading to improved wound healing due to a stimulation of wound contraction.
Resumo:
The objective of this study was to evaluate the effect of different water contents achieved by Annona emarginata (Schltdl.) H. Rainer seeds during immersion in GA3 solutions, in variation of soluble sugars levels and germination. Seeds with 10% of initial water content were submitted to imbibition in GA3 solutions with concentrations of 0; 250; 500; 750 and 1000 mg L-1 and when they reached the water content of 15%, 20%, 25%, 30% and 35%, the quantification of soluble sugars levels and germination test were performed. Seeds immersed up to they reach 15% of water with GA3 and immersed up to the water acquisition of 20% without GA3, presented higher soluble sugars levels and germination percentage, which were decreased when the seeds reached 30% and 35% of water, independently of the presence of the plant growth regulator. It was conclude that different water contents reached by the seeds in immersion treatments with GA3 affect the soluble sugars levels and germination percentage of Annona emarginata seeds. Thus, in treatments with Annona emarginata, the seeds must remain immersed in water without GA3 up to they reach 20% of water, as higher water contents (35%) reduce the soluble sugars levels and the seed germination percentage.
Resumo:
A series of poly(butylene terephthalate) copolyesters containing 5-tert-butyl isophthalate units up to 50%-mole, as well as the homopolyester entirely made of these units, were prepared by polycondensation from the melt. The microstructure of the copolymers was determined by NMR to be at random for the whole range of compositions. The effect exerted by the 5-tert-butyl isophthalate units on thermal, tensile and gas transport properties was evaluated. Both Tm and crystallinity as well as the mechanical moduli were found to decrease steadily with copolymerization whereas Tg increased and the polyesters became more brittle. Permeability and solubility sligthly increased also with the content in substituted units whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5-tert-butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters suggesting that a different chain mode of packing in the amorphous phase is likely adopted in this case.
Resumo:
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.
Resumo:
Oxalate is a highly insoluble metabolic waste excreted by the kidneys. Disturbances of oxalate metabolism are encountered in enteric hyperoxaluria (secondary to malabsorption, gastric bypass or in case of insufficient Oxalobacter colonization), in hereditary hyperoxaluria and in intoxication (ethylene glycol, vitamin C). Hyperoxaluria causes a large spectrum of diseases, from isolated hyperoxaluria to kidney stones and nephrocalcinosis formation, eventually leading to kidney failure and systemic oxalosis with life-threatening deposits in vital organs. New causes of hyperoxaluria are arising recently, in particular after gastric bypass surgery, which requires regular and preemptive monitoring. The treatment of hyperoxaluria involves reduction in oxalate intake and increase in calcium intake. Optimal urine dilution and supplementation with inhibitors of kidney stone formation (citrate) are required. Some conditions may need vitamin B6 supplementation, and the addition of probiotics might be useful in the future. Primary care physicians should identify cases of recurrent calcium oxalate stones and severe hyperoxaluria. Further management of hyperoxaluria requires specialized care.
Resumo:
Biocompatibility is a requirement for the development of nanofibers for ophthalmic applications. In this study, nanofibers were elaborated using poly(ε-caprolactone) via electrospinning. The ocular biocompatibility of this material was investigated. MIO-M1 and ARPE-19 cell cultures were incubated with nanofibers and cellular responses were monitored by viability and morphology. The in vitro biocompatibility revealed that the nanofibers were not cytotoxic to the ocular cells. These cells exposed to the nanofibers proliferated and formed an organized monolayer. ARPE-19 and MIO-M1 cells were capable of expressing GFAP, respectively, demonstrating their functionality. Nanofibers were inserted into the vitreous cavity of the rat's eye for 10days and the in vivo biocompatibility was investigated using Optical Coherence Tomography (OCT), histology and measuring the expression of pro-inflammatory genes (IL-1β, TNF-α, VEGF and iNOS) (real-time PCR). The OCT and the histological analyzes exhibited the preserved architecture of the tissues of the eye. The biomaterial did not elicit an inflammatory reaction and pro-inflammatory cytokines were not expressed by the retinal cells, and the other posterior tissues of the eye. Results from the biocompatibility studies indicated that the nanofibers exhibited a high degree of cellular biocompatibility and short-term intraocular tolerance, indicating that they might be applied as drug carrier for ophthalmic use.