738 resultados para SIMULATED MOVING-BED
Resumo:
Koalesenssi on ilmiö, jossa dispergoidun faasin pisarat pyrkivät muodostamaan suurempia pisaroita kunnes erotettava faasi muodostuu. Koalesenssi tapahtuu kolmessa päävaiheessa, jotka ovat lähestyminen, kiinnittyminen ja irrotus. Lähestymiseen vaikuttavat mekanismit ovat muuan muassa sieppaus, diffuusio, törmäysvaikutus, sedimentaatio, sähköiset repul-siovoimat ja van der Waalsin voimat. Kiinnittymisvaiheessa dispergoidun faasin pisarat syrjäyttävät väliaineen nestekalvon samalla kostuttaen väliaineen pinnan. Irrotusvaiheessa pisaran hydrodynaaminen voima voittaa pisaran ja väliaineen välisen adheesiovoiman. Koalesenssin tehokkuuteen vaikuttavat useat eri parametrit kuten virtausnopeus, pedin ominaisuudet, väliaineen ominaisuudet sekä emulsion ominaisuudet. Nämä kaikki asiat tulee ottaa huomioon koalesenssisuodatuksen suunnittelussa. Koalesenssisuodatus lukeutuu syväsuodatusmenetelmiin, jotka on ollut käytössä jo yli 100 vuotta. Koalesenssisuodatusmenetelmä on tehokas menetelmä pienten pisaroiden erottami-seen. Menetelmää käytetään esimerkiksi öljyisten jätevesien puhdistuksessa. Teollisen öljyn syväsuodatuksen etuihin kuuluu muun muassa sen kompakti koko, alhaisemmat käyt-tökustannukset, korkea erotusaste, kyky erotella pienetkin pisarat sekä helppo operointi, automatisointi ja huolto. Suurin haittapuoli on kuitenkin väliaineen tukkeutuminen, joten prosessi vaatii puhdistuksen tai väliaineen uusimisen. Tämän kandidaatintyön tarkoituksena oli koota kirjallisuustyö öljyn koalesenssisuodatuk-sesta. Työssä kartoitettiin koalesenssisuodatuksen lähtökohdat, teoria, tärkeimmät teolli-suuden sovellukset sekä väliaineet.
Resumo:
Breeding for high and low hypothermic responses to systemic administration of a serotonin1A (5-HT1A) receptor agonist (8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT) has resulted in high DPAT-sensitive (HDS) and low DPAT-sensitive (LDS) lines of rats, respectively. These lines also differ in several behavioral measures associated with stress. In the present microdialysis study we observed that basal 5-HT concentrations in the prefrontal cortex and dorsal hippocampus did not differ significantly between HDS and LDS rats. Thus, behavioral differences between the HDS and LDS lines might not be attributed to differences in basal 5-HT release. However, both lines had lower basal levels of 5-HT release than their randomly bred control group (random DPAT-sensitive, RDS) in the prefrontal cortex (mean ± SEM, pg/20 µl, was 3.0 ± 0.4 for LDS, 3.8 ± 0.3 for HDS and 6.4 ± 0.6 for RDS; F(2,59) = 5.8, P<0.005). The administration of (±)-fenfluramine (10 mg/kg) induced a greater increase in hippocampal 5-HT levels in HDS rats (500%) as compared with LDS (248%) or RDS (243%) rats (P<0.0001). There were no significant differences in the prefrontal cortex among lines, with a fenfluramine-induced 5-HT increase of about 900% in the three groups. This differential response to fenfluramine may be due to functional alterations of hippocampal 5-HT reuptake sites in the HDS line.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
This thesis studies the advantages, disadvantages and possibilities of additive manufacturing in making components with internal flow channels. These include hydraulic components, components with cooling channels and heat exchangers. Processes studied in this work are selective laser sintering and selective laser melting of metallic materials. The basic principles of processes and parameters involved in the process are presented and different possibilities of internal channel manufacturing and flow improvement are introduced
Resumo:
Master’s thesis Biomass Utilization in PFC Co-firing System with the Slagging and Fouling Analysis is the study of the modern technologies of different coal-firing systems: PFC system, FB system and GF system. The biomass co-fired with coal is represented by the research of the company Alstom Power Plant. Based on the back ground of the air pollution, greenhouse effect problems and the national fuel security today, the bioenergy utilization is more and more popular. However, the biomass is promoted to burn to decrease the emission amount of carbon dioxide and other air pollutions, new problems form like slagging and fouling, hot corrosion in the firing systems. Thesis represent the brief overview of different coal-firing systems utilized in the world, and focus on the biomass-coal co-firing in the PFC system. The biomass supply and how the PFC system is running are represented in the thesis. Additionally, the new problems of hot corrosion, slagging and fouling are mentioned. The slagging and fouling problem is simulated by using the software HSC Chemistry 6.1, and the emissions comparison between coal-firing and co-firing are simulated as well.
Resumo:
The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group) into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM) and delayed increase in DA levels (75 min after the beginning of perfusion). Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 ). These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.
Resumo:
The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Resumo:
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Resumo:
Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.
Resumo:
The yam (Discorea sp) is a tuber rich in carbohydrates, vitamins and mineral salts, besides several components that serve as raw material for medicines. It grows well in tropical and subtropical climates and develops well in zones with an annual pluvial precipitation of around 1300mm, and with cultural treatments, its productivity can exceed 30t/ha. When harvested, the tubers possess about 70% of moisture, and are merchandised "in natura", in the atmospheric temperature, which can cause its fast deterioration. The present work studied the drying of the yam in the form of slices of 1.0 and 2.5cm thickness, as well as in the form of fillets with 1.0 x 1.0 x 5.0cm, with the drying air varying from 40 to 70°C. The equating of the process was accomplished, allowing to simulate the drying as a function of the conditions of the drying air and of the initial and final moisture of the product. Also investigated was the expense of energy as function of the air temperature. The drying in the form of fillets, with the air in a temperature range between 45 and 50°C, was shown to be the most viable process when combining both the quality of the product and the expense of energy.
Resumo:
The freezing times of fruit pulp models packed and conditioned in multi-layered boxes were evaluated under conditions similar to those employed commercially. Estimating the freezing time is a difficult practice due to the presence of significant voids in the boxes, whose influence may be analyzed by means of various methods. In this study, a procedure for estimating freezing time by using the models described in the literature was compared with experimental measurements by collecting time/temperature data. The following results show that the airflow through packages is a significant parameter for freezing time estimation. When the presence of preferential channels was considered, the predicted freezing time in the models could be 10% lower than the experimental values, depending on the method. The isotherms traced as a function of the location of the samples inside the boxes showed the displacement of the thermal center in relation to the geometric center of the product.
Resumo:
Weldability of powder bed fusion (PBF) fabricated components has come to discussion in past two years due to resent developments in the PBF technology and limited size of the machines used in the fabrication process. This study concentrated on effects of energy input of welding on mechanical properties and microstructural features of welds between PBF fabricated stainless steel 316L sheets and cold rolled sheet metal of same composition by the means of destructive testing and microscopic analysis. Optical fiber diameter, laser power and welding speed were varied during the experiments that were executed following one variable at a time (OVAT) method. One of the problems of welded PBF fabricated components has been lower elongations at break comparing to conventionally manufactured components. Decreasing energy input of the laser keyhole welding decreased elongations at break of the welded specimens. Ultimate tensile strengths were not affected significantly by the energy input of the welding, but fracturing of the specimens welded using high energy input occurred from the weld metal. Fracturing of the lower energy input welds occurred from the PBF fabricated base metal. Energy input was found to be critical factor for mechanical properties of the welds. Multioriented grain growth and formation of neck at fusion zone boundary on the cold rolled side of the weld was detected and suspected to be result from weld pool flows caused by differences in molten weld pool behaviour between the PBF fabricated and cold rolled sides of the welds.