992 resultados para S-matrix theory
Resumo:
The recognition of Indigenous knowledge in western academic institutions challenges colonial discourses which have informed and shaped knowledge about Indigenous peoples, cultures and histories. Deeper analysis is required of the ways in which Indigenous knowledge and perspectives are perceived, and the processes through which university curricula can accommodate Indigenous knowledge in teaching and learning. To achieve this deeper analysis, and to invigorate the continuing decolonisation of Australian university curricula, this paper critically interrogates the methodology and conceptualisation of Indigenous knowledge in embedding Indigenous perspectives (EIP) projects in the university curriculum by drawing from tenets of critical race theory and the cultural interface (Nakata, 2007). Accordingly, we conduct this analysis from the standpoint that Indigenous knowledge in university curricula should not subscribe to the luxury of independence of scholarship from politics and activism. The learning objective is to create a space to legitimise politics in the intellectual / academic realm (Dei, 2008, p. 10). We conclude by arguing that critical race theory’s emancipatory, future and action-oriented goals for curricula (Dei, 2008) would enhance effective and sustainable embedding initiatives, and ultimately, preventing such initiatives from returning to the status quo (McLaughlin & Whatman, 2008).
Resumo:
Protecting slow sand filters (SSFs) from high-turbidity waters by pretreatment using pebble matrix filtration (PMF) has previously been studied in the laboratory at University College London, followed by pilot field trials in Papua New Guinea and Serbia. The first full-scale PMF plant was completed at a water-treatment plant in Sri Lanka in 2008, and during its construction, problems were encountered in sourcing the required size of pebbles and sand as filter media. Because sourcing of uniform-sized pebbles may be problematic in many countries, the performance of alternative media has been investigated for the sustainability of the PMF system. Hand-formed clay balls made at a 100-yearold brick factory in the United Kingdom appear to have satisfied the role of pebbles, and a laboratory filter column was operated by using these clay balls together with recycled crushed glass as an alternative to sand media in the PMF. Results showed that in countries where uniform-sized pebbles are difficult to obtain, clay balls are an effective and feasible alternative to natural pebbles. Also, recycled crushed glass performed as well as or better than silica sand as an alternative fine media in the clarification process, although cleaning by drainage was more effective with sand media. In the tested filtration velocity range of ð0:72–1:33Þ m=h and inlet turbidity range of (78–589) NTU, both sand and glass produced above 95% removal efficiencies. The head loss development during clogging was about 30% higher in sand than in glass media.
Resumo:
The literature abounds with descriptions of failures in high-profile projects and a range of initiatives has been generated to enhance project management practice (e.g., Morris, 2006). Estimating from our own research, there are scores of other project failures that are unrecorded. Many of these failures can be explained using existing project management theory; poor risk management, inaccurate estimating, cultures of optimism dominating decision making, stakeholder mismanagement, inadequate timeframes, and so on. Nevertheless, in spite of extensive discussion and analysis of failures and attention to the presumed causes of failure, projects continue to fail in unexpected ways. In the 1990s, three U.S. state departments of motor vehicles (DMV) cancelled major projects due to time and cost overruns and inability to meet project goals (IT-Cortex, 2010). The California DMV failed to revitalize their drivers’ license and registration application process after spending $45 million. The Oregon DMV cancelled their five year, $50 million project to automate their manual, paper-based operation after three years when the estimates grew to $123 million; its duration stretched to eight years or more and the prototype was a complete failure. In 1997, the Washington state DMV cancelled their license application mitigation project because it would have been too big and obsolete by the time it was estimated to be finished. There are countless similar examples of projects that have been abandoned or that have not delivered the requirements.
Resumo:
Background: Mentoring is often proposed as a solution to the problem of successfully recruiting and retaining nursing staff. The aim of this constructivist grounded theory study was to explore Australian rural nurses' experiences of mentoring. Design: The research design used was reflexive in nature resulting in a substantive, constructivist grounded theory study. Participants: A national advertising campaign and snowball sampling were used to recruit nine participants from across Australia. Participants were rural nurses who had experience in mentoring others. Methods: Standard grounded theory methods of theoretical sampling, concurrent data collection and analysis using open, axial and theoretical coding and a story line technique to develop the core category and category saturation were used. To cultivate the reflexivity required of a constructivist study, we also incorporated reflective memoing, situational analysis mapping techniques and frame analysis. Data was generated through eleven interviews, email dialogue and shared situational mapping. Results: Cultivating and growing new or novice rural nurses using supportive relationships such as mentoring was found to be an existing, integral part of experienced rural nurses' practice, motivated by living and working in the same communities. Getting to know a stranger is the first part of the process of cultivating and growing another. New or novice rural nurses gain the attention of experienced rural nurses through showing potential or experiencing a critical incidence. Conclusions: The problem of retaining nurses is a global issue. Experienced nurses engaged in clinical practice have the potential to cultivate and grow new or novice nurses-many already do so. Recognising this role and providing opportunities for development will help grow a positive, supportive work environment that nurtures the experienced nurses of tomorrow.
Resumo:
Aim. Our aim in this paper is to explain a methodological/methods package devised to incorporate situational and social world mapping with frame analysis, based on a grounded theory study of Australian rural nurses' experiences of mentoring. Background. Situational analysis, as conceived by Adele Clarke, shifts the research methodology of grounded theory from being located within a postpositivist paradigm to a postmodern paradigm. Clarke uses three types of maps during this process: situational, social world and positional, in combination with discourse analysis. Method. During our grounded theory study, the process of concurrent interview data generation and analysis incorporated situational and social world mapping techniques. An outcome of this was our increased awareness of how outside actors influenced participants in their constructions of mentoring. In our attempts to use Clarke's methodological package, however, it became apparent that our constructivist beliefs about human agency could not be reconciled with the postmodern project of discourse analysis. We then turned to the literature on symbolic interactionism and adopted frame analysis as a method to examine the literature on rural nursing and mentoring as secondary form of data. Findings. While we found situational and social world mapping very useful, we were less successful in using positional maps. In retrospect, we would argue that collective action framing provides an alternative to analysing such positions in the literature. This is particularly so for researchers who locate themselves within a constructivist paradigm, and who are therefore unwilling to reject the notion of human agency and the ability of individuals to shape their world in some way. Conclusion. Our example of using this package of situational and social worlds mapping with frame analysis is intended to assist other researchers to locate participants more transparently in the social worlds that they negotiate in their everyday practice. © 2007 Blackwell Publishing Ltd.
Resumo:
better health service.Conclusion:This research provides an insight into the perceptions of the rhetoric and reality of community member involvement in the process of developing multi-purpose services. It revealed a grounded theory in which fear and trust were intrinsic to a process of changing from a traditional hospital service to the acceptance of a new model of health care provided at a multi-purpose service.
Resumo:
Aims and objectives. This purpose of this study was to describe the process of expertise acquisition in nephrology nursing practice. Background. It has been recognized for a number of decades that experts, compared with other practitioners in a number of professions and occupations, are the most knowledgeable and effective, in terms of both the quantity and quality of output. Studies relating to expertise have been undertaken in a range of nursing contexts and specialties; to date, however, none have been undertaken which focus on nephrology nursing. Design. This study, using grounded theory methodology, took place in one renal unit in New South Wales, Australia and involved six non-expert and 11 expert nurses. Methods. Simultaneous data collection and analysis took place using participant observation, semi-structured interviews and review of nursing documentation. Findings. The study revealed a three-stage skills-acquisitive process that was identified as non-expert, experienced non-expert and expert stages. Each stage was typified by four characteristics, which altered during the acquisitive process; these were knowledge, experience, skill and focus. Conclusion. This was the first study to explore nephrology nursing expertise and uncovered new aspects of expertise not documented in the literature and it also made explicit other areas, which had only been previously implied. Relevance to clinical practice. Of significance to nursing, the exercise of expertise is a function of the recognition of expertise by others and it includes the blurring of the normal boundaries of professional practice. © 2006 Blackwell Publishing Ltd.
Resumo:
The works depicted two ostensibly plaster figures 'cocooned' in protective overalls. The pose of both figures had a sense of instability, balancing improbably due to internal weights. This teetering, arching quality, combined with the empty sleeves of the overalls, made reference to the Rodin's Balzac and its aura of heroic subjectivity. As the Tyvek suits depicted in the works are a common part of my studio paraphernalia, these works sought to draw a line between these two opposing aspects of the subjectivity of the artist - the transcendent and the quotidian. The works were shown as part of ‘The Day the Machine Started’ for Dianne Tanzer Gallery + Projects at the 2010 Melbourne Art Fair. The works received citations in The Age and The Australian newspapers.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
We consider the problem of prediction with expert advice in the setting where a forecaster is presented with several online prediction tasks. Instead of competing against the best expert separately on each task, we assume the tasks are related, and thus we expect that a few experts will perform well on the entire set of tasks. That is, our forecaster would like, on each task, to compete against the best expert chosen from a small set of experts. While we describe the “ideal” algorithm and its performance bound, we show that the computation required for this algorithm is as hard as computation of a matrix permanent. We present an efficient algorithm based on mixing priors, and prove a bound that is nearly as good for the sequential task presentation case. We also consider a harder case where the task may change arbitrarily from round to round, and we develop an efficient approximate randomized algorithm based on Markov chain Monte Carlo techniques.
Resumo:
In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.