887 resultados para Routing path
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation. © 2012 IEEE.
Resumo:
In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
In this paper we present an optimization of the Optimum-Path Forest classifier training procedure, which is based on a theoretical relationship between minimum spanning forest and optimum-path forest for a specific path-cost function. Experiments on public datasets have shown that the proposed approach can obtain similar accuracy to the traditional one but with faster data training. © 2012 ICPR Org Committee.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.
Resumo:
Incluye Bibliografía
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.
Resumo:
Besides optimizing classifier predictive performance and addressing the curse of the dimensionality problem, feature selection techniques support a classification model as simple as possible. In this paper, we present a wrapper feature selection approach based on Bat Algorithm (BA) and Optimum-Path Forest (OPF), in which we model the problem of feature selection as an binary-based optimization technique, guided by BA using the OPF accuracy over a validating set as the fitness function to be maximized. Moreover, we present a methodology to better estimate the quality of the reduced feature set. Experiments conducted over six public datasets demonstrated that the proposed approach provides statistically significant more compact sets and, in some cases, it can indeed improve the classification effectiveness. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Incluye Bibliografía
Resumo:
The Economic Commission for Latin America and the Caribbean (ECLAC), Subregional Headquarters for the Caribbean, and secretariat of the Caribbean Development and Cooperation Committee (CDCC) convened a Seminar on Caribbean Development Thinking: The Path Covered and the Way Forward, in Port of Spain on 21 October 2009. The meeting was attended by representatives of the following CDCC member countries: Dominica, Grenada, Guyana, Jamaica, Saint Lucia, Saint Kitts and Nevis, Saint Vincent and the Grenadines, Suriname and Trinidad and Tobago. Representatives of the following organizations of the United Nations system also attended: the International Labour Organisation (ILO); Joint United Nations Project on HIV/AIDS (UNAIDS); and the United Nations Development Programme (UNDP). The following intergovernmental organizations were represented: the Caribbean Community (CARICOM); the Caribbean Development Bank (CDB); the Caribbean Regional Negotiating Mechanism/Caribbean Community (CRNM/CARICOM); Delegation of the European Commission in Trinidad and Tobago; the Organisation of American States (OAS); and the Organisation of Eastern Caribbean States (OECS). The University of the West Indies (UWI) also participated. The list of participants appears as annex I to this report.
Resumo:
Neste trabalho estudamos alguns algoritmos de alocação de comprimento de onda em redes ópticas WDM (Wavelength Division Multiplexing). O objetivo para estudar os algoritmos de alocação first-fit, least-used e most-used está baseado na estratégia adotada para estudar o Problema RWA. A estratégia toma como base a visão geral do problema que envolve os algoritmos de roteamento e os algoritmos de alocação de comprimento de onda, e tendo como métrica principal para seus resultados a probabilidade de bloqueio. Este trabalho apresenta uma visão diferenciada para o problema e considera-se que a alocação de comprimentos de onda se sobrepõe, em importância, à ação de roteamento em redes ópticas. Essa percepção ocorre quando se analisa o problema RWA a partir do critério clássico usado no estabelecimento de uma rota: a escolha do caminho mais curto entre a origem e o destino. Apesar da identificação de um caminho mais curto, isso não garante, em redes ópticas, que ele será o utilizado, pois é necessário que haja para aquele caminho, um comprimento de onda adequado. Foi utilizada uma ferramenta de simulação para redes WDM denominada OWNS para realizar uma análise do problema RWA. Os resultados obtidos são apresentados graficamente e em uma das simulações observou-se uma forte tendência de queda na probabilidade de bloqueio e uma boa vazão no trafego da rede com isso possibilitando um aumento na capacidade de transmissão da rede. Por fim, este texto apresenta uma discussão sobre os diferenciais e limitações deste trabalho, e apresenta direcionamentos para investigações futuras neste campo de estudo.
Resumo:
As capoeiras - áreas alteradas por ação antrópica que se encontram em estágios de regeneração espontânea de cobertura florestal - são componentes da paisagem rural de grande significado na Amazônia. No último Censo Agropecuário, as áreas de capoeira perfaziam 4,5 milhões de hectares em toda a Região Norte. Uma literatura crescentemente importante considera tais áreas proxy de economias rurais decadentes e insustentáveis, sobre as quais se ergue uma pecuária de corte eficiente e sustentável. Este artigo procura estabelecer os diferentes tipos de capoeira que se constatam na economia rural da Amazônia, associando-as às diferentes formas de produção, cujos sistemas se expressam dinamicamente como trajetórias tecnológicas concorrentes. A partir daí a) demonstra que parte dessas áreas resulta de mudanças positivas nos sistemas produtivos que produzem capoeiras com grande capacidade de regeneração – estando associada, portanto, a inovações relevantes para o desenvolvimento da Região numa perspectiva que incorpora critérios de sustentabilidade ambiental; b) demonstra que os tipos de capoeira que indicam degradação, pela baixa capacidade de regeneração, se associam à pecuária de corte, a qual na Região tem apresentado dificuldades estruturais de modernização técnica e c) indica que o ambiente institucional, favorecendo os sistemas que produzem capoeira degradada em detrimento daqueles que produzem capoeiras de rápida recomposição, podem aprisionar (levar a um lock-in) a economia agrária da região nas piores soluções, tanto econômica, quanto social e ecologicamente.
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.