910 resultados para Rockwell Superficial Hardness tester
Resumo:
This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.
Resumo:
Statement of problem. Acrylic resin denture teeth soften upon immersion in water, and the heating generated during microwave sterilization may enhance this process.Purpose. Six brands of acrylic resin denture teeth were investigated with respect to the effect of microwave sterilization and water immersion on Vickers hardness (VHN).Material and Methods. The acrylic resin denture teeth (Dentron [D], Vipi Dent Plus [V], Postaris [P], Biolux [B], Trilux [T], and Artiplus [A]) were embedded in heat-polymerized acrylic resin within polyvinylchloride tubes. For each brand, the occlusal surfaces of 32 identical acrylic resin denture posterior teeth were ground flat with 1500-grit silicon carbide paper and polished on a wet polishing wheel with a slurry of tin oxide. Hardness tests were performed after polishing (control group, C) after polishing followed by 2 cycles of microwave sterilization at 650 W for 6 minutes (MwS group), after polishing followed by 90-day immersion in water (90-day Wim group), and after polishing followed by 90-day storage in water and 2 cycles of microwave sterilization (90-day Wim + MwS group). For each specimen, 8 hardness measurements were made and the mean was calculated. Data were analyzed with a 2-way analysis of variance followed by the Bonferroni procedure to determine any significance between pairs of mean values (alpha=.01).Results: Mircrowave sterilization of specimens significantly decreased (P <.001) the hardness of the acrylic resin denture tooth specimens P (17.8 to 16.6 VHN, V (18.3 to 15.8 VHN), T (17.4 to 15.3 VHN), B (16.8 to 15.7 VHN), and A (17.3 to 15.7 VHN). For all acrylic resin denture teeth, no significant differences in hardness were found between the groups Mws, 90-day Wim, and 90-day Wim + MwS, with the exception of the 90-day Wim + MwS tooth A specimens (14.4 VHN), which demonstrated significant lower mean values (P <.001) than the 90-day Wim (15.8 VHN) and MwS (15.7 VHN) specimens.Conclusions. For specimens immersed in water for 90 days, 2 cycles of microwave sterilization had no effect on the hardness of most of the acrylic resin denture teeth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Being the surface roughness a fundamental property in the fit of the castings, it was determined the roughness of 5 high-copper casting alloys, according to the heating over their melting temperature. That way, the specimens made with smooth plastic in the shape of a rectangular plate, 2 mm x 7 mm x 11 mm were invested into a cristobalite investment. After heating and elimination on the plastic, the molds were filled by 3 g of molten alloy, casted in a electrical casting machine at the casting temperature at 25 degrees C and 50 degrees C overheating. The surface roughness was measured in a roughness analyser, Talysurf. As a result, it was verified that there is a variation of surface roughness among the alloys tested, and the heating of the alloys until 50 degrees C over the melting temperature does not interfere in the roughness.
Resumo:
Successful application of shallow seismic reflection method is related directly to the ability of the ground to transmit high-frequency seismic energy from a seismic source. The dominant frequencies of reflection data are in the range of 50 to 100 Hz and depend on the surface materials and water table. A spread of geophones send the siemsic signal to be recorded on a 12, 24 or 48 channel portable seismograph, using a single high-frequency geophone per channel. Although it is possible to find seismographs with display and processing unities, it is also possible to transfer digitalized data to a personal computer to be processed and interpreted by using specific programs. Some results of two recent field studies to specify the underground structure in the tidal flats area of Baie St. Paul (Quebec-Canada) and in glacial terrains, in the Waterloo (Ontario-Canada) region. -from English summary
Resumo:
The objective of this in vitro study was to quantitatively assess the effects of bleaching with 10 and 15% carbamide peroxide (CP) on restoration materials by performing superficial microhardness analysis. Acrylic cylindrical containers (4 x 2 mm) were filled with the following restoration products: Charisma (Heraues Kulzer, Vila Santa Catarina, São Paulo, Brazil), Durafill VS (Heraeus Kulzer), Vitremer (3M, Sumaré, São Paulo, Brazil), Dyract (Dentsply, Petrópolis, Rio de Janeiro, Brazil), and Permite C (SDI, São Pauio, São Paulo, Brazil). Sixty samples were prepared of each restoration material. Twenty samples received bleaching treatment with 10% CP, 20 samples received bleaching treatment with 15% CP, and 20 samples were kept submerged in artificial saliva, which was replaced daily. The treatment consisted of immersion of the specimens in 1 cm3 of CP at 10 and 15% for 6 hours per day during 3 weeks, whereupon the test specimens were washed, dried, and kept immersed in artificial saliva for 18 hours. Then the test and control specimens were analyzed using a microhardness gauge. The Knoop Hardness Number (KHN) was taken for each test and control specimen at five different locations by applying a 25 g force for 20 seconds. The values obtained were transformed into KHNs and the mean was calculated. The data were submitted to statistical analysis by analysis of variance and Tukey test, p < .05. The means/standard deviations were as follows: Charisma: CP 10% 38.52/4.08, CP 15% 34.31/6.13, saliva 37.36/4.48; Durafill VS: CP 10% 18.65/1.65, CP 15% 19.38/2.23, saliva 18.27/1.43; Dyract AP: CP 10% 30.26/2.81, CP 15% 28.64/5.44, saliva 33.88/3.46; Vitremer: CP 10% 28.15/3.04, CP 15% 17.40/3.11, saliva 40.93/4.18; and Permite C: CP 10% 183.50/27.09, CP 15% 159.45/5.78, saliva 215.80/26.15. A decrease in microhardness was observed for the materials Dyract AP, Vitremer, and Permite C after treatment with CP at 10 and 15%, whereas no effect on either of the two composites (Charisma and Durafill) was verified. CLINICAL SIGNIFICANCE: The application of the carbamide peroxide gels at 10 and 15% did not alter the microhardness of the composite resins Charisma and Durafill. In situ and clinical studies are necessary to enable one to conclude that the reduction in microhardness of the materials effectively results in clinical harm to the restorations.