957 resultados para Robots autònoms -- Sistemes de control
Resumo:
Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.
Resumo:
An algorithm to improve the accuracy and stability of rigid-body contact force calculation is presented. The algorithm uses a combination of analytic solutions and numerical methods to solve a spring-damper differential equation typical of a contact model. The solution method employs the recently proposed patch method, which especially suits the spring-damper differential equations. The resulting semi-analytic solution reduces the stiffness of the differential equations, while performing faster than conventional alternatives.
Resumo:
Conventional cameras have limited dynamic range, and as a result vision-based robots cannot effectively view an environment made up of both sunny outdoor areas and darker indoor areas. This paper presents an approach to extend the effective dynamic range of a camera, achieved by changing the exposure level of the camera in real-time to form a sequence of images which collectively cover a wide range of radiance. Individual control algorithms for each image have been developed to maximize the viewable area across the sequence. Spatial discrepancies between images, caused by the moving robot, are improved by a real-time image registration process. The sequence is then combined by merging color and contour information. By integrating these techniques it becomes possible to operate a vision-based robot in wide radiance range scenes.
Resumo:
The aim of this case-control study of 617 children was to investigate early childhood caries (ECC) risk indicators in a non-fluoridated region in Australia. ECC cases were recruited from childcare facilities, public hospitals and private specialist clinics to source children from different socioeconomic backgrounds. Non-ECC controls were recruited from the same childcare facilities. A multinomial logistic modelling approach was used for statistical analysis. The results showed that a large percentage of children tested positive for Streptococcus mutans if their mothers also tested positive. A common risk indicator found in ECC children from childcare facilities and public hospitals was visible plaque (OR 4.1, 95% CI 1.0-15.9, and OR 8.7, 95% CI 2.3-32.9, respectively). Compared to ECC-free controls, the risk indicators specific to childcare cases were enamel hypoplasia (OR 4.2, 95% CI 1.0-18.3), difficulty in cleaning child's teeth (OR 6.6, 95% CI 2.2-19.8), presence of S. mutans (OR 4.8, 95% CI 0.7-32.6), sweetened drinks (OR 4.0, 95% CI 1.2-13.6) and maternal anxiety (OR 5.1, 95% CI 1.1-25.0). Risk indicators specific to public hospital cases were S. mutans presence in child (OR 7.7, 95% CI 1.3-44.6) or mother (OR 8.1, 95% CI 0.9-72.4), ethnicity (OR 5.6, 95% CI 1.4-22.1), and access of mother to pension or health care card (OR 20.5, 95% CI 3.5-119.9). By contrast, a history of chronic ear infections was found to be protective for ECC in childcare children (OR 0.28, 95% CI 0.09-0.82). The biological, socioeconomic and maternal risk indicators demonstrated in the present study can be employed in models of ECC that can be usefully applied for future longitudinal studies.
Resumo:
Globally, the main contributors to morbidity and mortality are chronic diseases, including cardiovascular disease and diabetes. Chronic diseases are costly and partially avoidable, with around sixty percent of deaths and nearly fifty percent of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing health care systems, both national and international, that focus on acute episodic health conditions, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already afflicted with chronic diseases. International and Australian strategic planning documents articulate similar elements to manage chronic disease; including the need for aligning sectoral policies for health, forming partnerships and engaging communities in decision-making. The Australian National Chronic Disease Strategy focuses on four core areas for managing chronic disease; prevention across the continuum, early detection and treatment, integrated and coordinated care, and self-management. Such a comprehensive approach incorporates the entire population continuum, from the ‘healthy’, to those with risk factors, through to people suffering from chronic conditions and their sequelae. This chapter examines comprehensive approach to the prevention, management and care of the population with non-communicable, chronic diseases and communicable diseases. It analyses models of care in the context of need, service delivery options and the potential to prevent or manage early intervention for chronic and communicable diseases. Approaches to chronic diseases require integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. Communicable diseases are a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment of infectious diseases. However in underdeveloped nations, communicable diseases continue to contribute significantly to the burden of disease. The aim of this chapter is to outline the impact that chronic and communicable diseases have on the health of the community, the public health strategies that are used to reduce the burden of those diseases and the old and emerging risks to public health from infectious diseases.
Resumo:
Current train of thought in appetite research is favouring an interest in non-homeostatic or hedonic (reward) mechanisms in relation to overconsumption and energy balance. This tendency is supported by advances in neurobiology that precede the emergence of a new conceptual approach to reward where affect and motivation (liking and wanting) can be seen as the major force in guiding human eating behaviour. In this review, current progress in applying processes of liking and wanting to the study of human appetite are examined by discussing the following issues: How can these concepts be operationalised for use in human research to reflect the neural mechanisms by which they may be influenced? Do liking and wanting operate independently to produce functionally significant changes in behaviour? Can liking and wanting be truly experimentally separated or will an expression of one inevitably contain elements of the other? The review contains a re-examination of selected human appetite research before exploring more recent methodological approaches to the study of liking and wanting in appetite control. In addition, some theoretical developments are described in four diverse models that may enhance current understanding of the role of these processes in guiding ingestive behaviour. Finally, the implications of a dual process modulation of food reward for weight gain and obesity are discussed. The review concludes that processes of liking and wanting are likely to have independent roles in characterising susceptibility to weight gain. Further research into the dissociation of liking and wanting through implicit and explicit levels of processing would help to disclose the relative importance of these components of reward for appetite control and weight regulation.
Resumo:
GMPLS is a generalized form of MPLS (MultiProtocol Label Switching). MPLS is IP packet based and it uses MPLS-TE for Packet Traffic Engineering. GMPLS is extension to MPLS capabilities. It provides separation between transmission, control and management plane and network management. Control plane allows various applications like traffic engineering, service provisioning, and differentiated services. GMPLS control plane architecture includes signaling (RSVP-TE, CR-LDP) and routing (OSPF-TE, ISIS-TE) protocols. This paper provides an overview of the signaling protocols, describes their main functionalities, and provides a general evaluation of both the protocols.
Resumo:
Masks are widely used in different industries, for example, traditional metal industry, hospitals or semiconductor industry. Quality is a critical issue in mask industry as it is related to public health and safety. Traditional quality practices for manufacturing process have some limitations in implementing them in mask industries. This paper aims to investigate the suitability of Six Sigma quality control method for the manufacturing process in the mask industry to provide high quality products, enhancing the process capacity, reducing the defects and the returned goods arising in a selected mask manufacturing company. This paper suggests that modifications necessary in Six Sigma method for effective implementation in mask industry.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
We present a novel, simple and effective approach for tele-operation of aerial robotic vehicles with haptic feedback. Such feedback provides the remote pilot with an intuitive feel of the robot’s state and perceived local environment that will ensure simple and safe operation in cluttered 3D environments common in inspection and surveillance tasks. Our approach is based on energetic considerations and uses the concepts of network theory and port-Hamiltonian systems. We provide a general framework for addressing problems such as mapping the limited stroke of a ‘master’ joystick to the infinite stroke of a ‘slave’ vehicle, while preserving passivity of the closed-loop system in the face of potential time delays in communications links and limited sensor data
Resumo:
The advantages of a spherical imaging model are increasingly well recognized within the robotics community. Perhaps less well known is the use of the sphere for attitude estimation, control and scene structure estimation. This paper proposes the sphere as a unifying concept, not just for cameras, but for sensor fusion, estimation and control. We review and summarize relevant work in these areas and illustrate this with relevant simulation examples for spherical visual servoing and scene structure estimation.
Resumo:
Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.
Resumo:
This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.
Resumo:
Managing livestock movement in extensive systems has environmental and production benefits. Currently permanent wire fencing is used to control cattle; this is both expensive and inflexible. Cattle are known to respond to auditory and visual cues and we investigated whether these can be used to manipulate their behaviour. Twenty-five Belmont Red steers with a mean live weight of 270kg were each randomly assigned to one of five treatments. Treatments consisted of a combination of cues (audio, tactile and visual stimuli) and consequence (electrical stimulation). The treatments were electrical stimulation alone, audio plus electrical stimulation, vibration plus electrical stimulation, light plus electrical stimulation and electrified electric fence (6kV) plus electrical stimulation. Cue stimuli were administered for 3s followed immediately by electrical stimulation (consequence) of 1kV for 1s. The experiment tested the operational efficacy of an on-animal control or virtual fencing system. A collar-halter device was designed to carry the electronics, batteries and equipment providing the stimuli, including audio, vibration, light and electrical of a prototype virtual fencing device. Cattle were allowed to travel along a 40m alley to a group of peers and feed while their rate of travel and response to the stimuli were recorded. The prototype virtual fencing system was successful in modifying the behaviour of the cattle. The rate of travel of cattle along the alley demonstrated the large variability in behavioural response associated with tactile, visual and audible cues. The experiment demonstrated virtual fencing has potential for controlling cattle in extensive grazing systems. However, larger numbers of cattle need to be tested to derive a better understanding of the behavioural variance. Further controlled experimental work is also necessary to quantify the interaction between cues, consequences and cattle learning.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.