965 resultados para Robot sensing systems
Resumo:
In this article we envision factors and trends that shape the next generation of environmental monitoring systems. One key factor in this respect is the combined effect of end-user needs and the general development of IT services and their availability. Currently, an environmental (monitoring) system is assumed to be reactive. It delivers measurement data and computational results only if the user explicitly asks for it either by query or subscription. There is a temptation to automate this by simply pushing data to end-users. This, however, leads easily to an "advertisement strategy", where data is pushed to end-users regardless of users' needs. Under this strategy, the mere amount of received data obfuscates the individual messages; any "automatic" service, regardless of its fitness, overruns a system that requires the user's initiative. The foreseeable problem is that, unless there is no overall management, each new environmental service is going to compete for end-users' attention and, thus, inadvertently hinder the use of existing services. As the main contribution we investigate the nature of proactive environmental systems, and how they should be designed to avoid the aforementioned problem. We also discuss how semantics, participatory sensing, uncertainty management, and situational awareness link to proactive environmental systems. We illustrate our proposals with some real-life examples.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties. © 2007 IOP Publishing Ltd.
Resumo:
Progress in optical fibre sensor research has often been achieved by taking advantage of components developed for use in telecommunications, where the greater existing market is able to support the rapid commercialisation of novel devices. In the last few years there has been considerable interest in the telecommunications community in deploying arrayed waveguide gratings (AWGs) produced in a range of technologies in a variety of roles. We feel it is therefore surprising that there have been very few reports of research into using AWGs for sensing. In this paper we consider some possible roles for these devices in interrogation systems for interferometric and fibre Bragg grating (FBG) sensors.
Resumo:
The paper is related with the problem of developing autonomous intelligent robots for complex environments. In details it outlines a knowledge-based robot control architecture that combines several techniques in order to supply an ability to adapt and act autonomously in complex environments. The described architecture has been implemented as a robotic system that demonstrates its operation in dynamic environment. Although the robotic system demonstrates a certain level of autonomy, the experiments show that there are situation, in which the developed base architecture should be complemented with additional modules. The last few chapters of the paper describe the experimentation results and the current state of further research towards the developed architecture.
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.
Resumo:
Sensing technology is a key enabler of the Internet of Things (IoT) and could produce huge volume data to contribute the Big Data paradigm. Modelling of sensing information is an important and challenging topic, which influences essentially the quality of smart city systems. In this paper, the author discusses the relevant technologies and information modelling in the context of smart city and especially reports the investigation of how to model sensing and location information in order to support smart city development.
Resumo:
Geographic Information Systems (GIS) is an emerging information technology (IT) which promises to have large scale influences in how spatially distributed resources are managed. It has had applications in the management of issues as diverse as recovering from the disaster of Hurricane Andrew to aiding military operations in Desert Storm. Implementation of GIS systems is an important issue because there are high cost and time involvement in setting them up. An important component of the implementation problem is the "meaning" different groups of people who are influencing the implementation give to the technology. The research was based on the theory of (theoretical stance to the problem was based on the) "Social Construction of Knowledge" systems which assumes knowledge systems are subject to sociological analysis both in usage and in content. An interpretive research approach was adopted to inductively derive a model which explains how the "meanings" of a GIS are socially constructed. The research design entailed a comparative case analysis over two county sites which were using the same GIS for a variety of purposes. A total of 75 in-depth interviews were conducted to elicit interpretations of GIS. Results indicate that differences in how geographers and data-processors view the technology lead to different implementation patterns in the two sites.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence, critical for establishing infection. There are two major pathways of QS systems. Type 1 is species specific or intra-species communication in which N-acylhomoserine lactones (Gram-negative bacteria) or oligopeptides (Gram-positive bacteria) are employed as signaling molecules (autoinducer one). Type 2 is inter-species communication in which S-4,5-dihydroxy-2,3-pentanedione (DPD) or its borate esters are used as signaling molecules. The DPD is biosynthesized by LuxS enzyme from S-ribosylhomocysteine (SRH). Recent increase in prevalence of bacterial strains resistant to antibiotics emphasizes the need for the development of new generation of antibacterial agents. Interruption of QS by small molecules is one of the viable options as it does not affect bacterial growth but only virulence, leading to less incidence of microbial resistance. Thus, in this work, inhibitors of both N-acylhomoserine lactone (AHL) mediated intra-species and LuxS enzyme, involved in inter-species QS are targeted. The γ-lactam and their reduced cyclic azahemiacetal analogs, bearing the additional alkylthiomethyl substituent, were designed and synthesized targeting AHL mediated QS systems in P. aeruginosa and Vibrio harveyi. The γ-lactams with nonylthio or dodecylthio chains acted as inhibitors of las signaling in P. aeruginosa with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent were found to strongly inhibit both las and rhl signaling in P. aeruginosa at higher concentrations. However, lactam and their azahemiacetal analogs were found to be inactive in V. harveyi QS systems. The 4-aza-S-ribosyl-L-homocysteine (4-aza-SRH) analogs and 2-deoxy-2-substituted-S-ribosyl-L-homocysteine analogs were designed and synthesized targeting Bacillus subtilis LuxS enzyme. The 4-aza-SRH analogs in which oxygen in ribose ring is replaced by nitrogen were further modified at anomeric position to produce pyrrolidine, lactam, nitrone, imine and hemiaminal analogs. Pyrrolidine and lactam analogs which lack anomeric hydroxyl, acted as competitive inhibitors of LuxS enzyme with KI value of 49 and 37 µM respectively. The 2,3-dideoxy lactam analogs were devoid of activity. Such findings attested the significance of hydroxyl groups for LuxS binding and activity. Hemiaminal analog of SRH was found to be a time-dependent inhibitor with IC50 value of 60 µM.
Resumo:
Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
The northern Antarctic Peninsula is one of the fastest changing regions on Earth. The disintegration of the Larsen-A Ice Shelf in 1995 caused tributary glaciers to adjust by speeding up, surface lowering, and overall increased ice-mass discharge. In this study, we investigate the temporal variation of these changes at the Dinsmoor-Bombardier-Edgeworth glacier system by analyzing dense time series from various spaceborne and airborne Earth observation missions. Precollapse ice shelf conditions and subsequent adjustments through 2014 were covered. Our results show a response of the glacier system some months after the breakup, reaching maximum surface velocities at the glacier front of up to 8.8 m/d in 1999 and a subsequent decrease to ~1.5 m/d in 2014. Using a dense time series of interferometrically derived TanDEM-X digital elevation models and photogrammetric data, an exponential function was fitted for the decrease in surface elevation. Elevation changes in areas below 1000 m a.s.l. amounted to at least 130±15 m130±15 m between 1995 and 2014, with change rates of ~3.15 m/a between 2003 and 2008. Current change rates (2010-2014) are in the range of 1.7 m/a. Mass imbalances were computed with different scenarios of boundary conditions. The most plausible results amount to -40.7±3.9 Gt-40.7±3.9 Gt. The contribution to sea level rise was estimated to be 18.8±1.8 Gt18.8±1.8 Gt, corresponding to a 0.052±0.005 mm0.052±0.005 mm sea level equivalent, for the period 1995-2014. Our analysis and scenario considerations revealed that major uncertainties still exist due to insufficiently accurate ice-thickness information. The second largest uncertainty in the computations was the glacier surface mass balance, which is still poorly known. Our time series analysis facilitates an improved comparison with GRACE data and as input to modeling of glacio-isostatic uplift in this region. The study contributed to a better understanding of how glacier systems adjust to ice shelf disintegration.
Resumo:
This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.
This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.
Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.
Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.