959 resultados para River Basin Committees
Resumo:
Acknowledgements This work was funded by Natural Science Foundation of China under grant numbers of 41071337 and 40830528 and jointly by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Resumo:
Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the model’s ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.
Resumo:
Water constitutes the basic resource for life. Management of coastal aquifers, which are the important sources of freshwater that feed the rapid economic growth of the region is facing increasing challenges. A large portion of the global population inhabits the coastal and adjoining areas leading to a high demand for water both surface and ground water resources of coastal tracts. With increasing population this puts significant stress on water resources of many of the coastal tracts of the world. Several recent studies have indicated that coastal aquifers of Cenozoic age are globally under threat due to several reasons. Climate change is expected to affect the freshwater resources of coastal aquifers, which in turn will affect half of the global population residing in coastal areas. Sea-level rise will induce landward migration of the freshwater-saltwater transition zone, i.e., seawater or saltwater intrusion, jeopardizing freshwater availability. In order to facilitate the management of fresh coastal groundwater resources, a comprehensive understanding of the SLR-SWI relationship is crucial.
Resumo:
We explore bioregional management in the Murray-Darling Basin (MDB) in Australia through the institutional design characteristics of the MDB River Basin Organization (RBO), the actors and organizations who supported and resisted the establishment of the RBO, and the effectiveness of the RBO. During the last 25 years, there has been a major structural reform in the MDB RBO, which has changed from an interstate coordinating body to an Australian government agency. Responsibility for basin management has been centralized under the leadership of the Australian government, and a comprehensive integrated Basin plan has been adopted. The driving forces for this centralization include national policy to restore river basins to sustainable levels of extraction, state government difficulties in reversing overallocation of water entitlements, the millennium drought and its effects, political expediency on the part of the Australian government and state governments, and a major injection of Australian government funding. The increasing hierarchy and centralization of the MDB RBO does not follow a general trend toward multilevel participative governance of RBOs, but decentralization should not be overstated because of the special circumstances at the time of the centralization and the continuing existence of some decentralized elements, such as catchment water plans, land use planning, and water quality. Further swings in the centralization–decentralization pendulum could occur. The MDB reform has succeeded in rebalancing Basin water allocations, including an allocation for the environment and reduced diversion limits. There are some longer term risks to the implementation of reform, including lack of cooperation by state governments, vertical coordination difficulties, and perceived reductions in the accountability and legitimacy of reform at the local level. If implementation of the Basin plan is diverted or delayed, a new institution, the Commonwealth Environmental Water Holder, can play a major role in securing and coordinating environmental water supplies.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
"March 1988."
Resumo:
Introduction: Overwhelming evidence implicates Helicobacter pylori (H. pylori) as an etiologic agent of gastrointestinal diseases including gastric cancer. The mode of transmission of this pathogen remains poorly understood. Objective: This investigation is to establish the presence of H. pylori in the waters of the Nairobi river basin and the predictive value the presence of fecal indicator bacteria would have for H. pylori. Methodology: Physical, chemical and biological assessment of water quality of rivers in Nairobi were carried out using standard methods. H. pylori DNA in water was detected using highly specific primers of glmM gene (294pb). Results: There was high presence of faecal bacteria in the waters sampled. H. pylori DNA was detected in two domestic wells and one river. The wells were located in two different regions of the water basin but influenced by similar human activities. Conclusion: The high presence of faecal bacteria in the waters sampled did not parallel the H. pylori detection in the same waters. H. pylori was detected in the Nairobi river basin, but there was no relationship between the numerical levels of fecal bacteria and H. pylori.
Resumo:
The common use of phosphate fertilizers NPK and amendments in sugar cane crops in Brazilian agriculture may increase the Ra-226, Th-232 and K-40 activity concentrations in soils and their availability for plants and human food chain. Thus, the main aim of this study was to evaluate the distribution of Ra-226, Th-232 and K-40 in soils and sugar cane crops in the Corumbatai river basin, São Paulo State, Brazil. The gamma spectrometry was utilized to measure the Ra-226, Th-232 and K-40 activity concentration in all samples. The soil-to-sugar cane transfer factors (TF) were quantified using the ratio between the radionuclide activity concentration in sugar cane and its activity concentration in soil. The results show that, although radionuclides incorporated in phosphate fertilizers and amendments are annually added in the sugar cane crops, if utilized in accordance with the recommended rates, their use does not lead to hazards levels in soils. The soil-to-sugar cane transfer of radionuclides occurred in the following order K-40 > Ra-226 > Th-232. Therefore, under these conditions, radionuclides intake through consumption of sugar is not hazardous to human health. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Limnoperna fortunei (Dunker, 1857) is a small mytilid native to Southeast Asia. It was introduced in South America in early 1990 and has dispersed from Argentina to central Brazil, and until 2014 has been restricted mainly to the Paraná and Uruguay river basins. The present note reports the occurrence of Limnoperna fortunei for the first time in the São Francisco River basin in northeastern Brazil. The establishment of L. fortunei in these regions will require close attention from the government and also by society.
Resumo:
Foram comparados a biomassa, a composição química e o valor nutritivo da macrófita aquática emersa S. alterniflora em um rio impactado por descargas de efluentes domésticos (Rio Guaú) e em um rio bem conservado (Rio Itanhaém). Amostras de S. alterniflora, água e sedimento foram coletadas nos dois rios, em novembro de 2001. O rio Guaú apresentou as maiores concentrações de N-Total e P-Total na água (415 e 674 µg.L-1, respectivamente) e sedimento (0,25 e 0,20% de Massa Seca, respectivamente), em relação a água (NT = 105 µg.L-1; PT= 20 µg.L-1) e sedimento (NT = 0,12% MS; PT = 0,05% MS) do rio Itanhaém. A biomassa aérea (316 g MS.m-2) e subterrânea (425 g MS.m-2) de S. alterniflora no rio Guaú foram significativamente maiores do que no rio Itanhaém (146 e 115 g MS.m-2). Além disto, os valores de NT, proteínas, PT, lipídios e carboidratos solúveis foram significativamente maiores na biomassa de S. alterniflora no rio Guaú. Por outro lado, a fração de parede celular e os teores de polifenóis foram maiores na biomassa de S. alterniflora no rio Itanhaém. Concluiu-se que o lançamento de efluentes domésticos em corpos d'água pode aumentar a biomassa e alterar a composição química de S. alterniflora. A maior disponibilidade de N e P no rio Guaú, provavelmente, é a causa dos maiores valores de biomassa, NT, PT, lipídeos e carboidratos solúveis em S. alterniflora neste rio.
Resumo:
Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.
Resumo:
Water samples were collected from 33 domestic wells, 2 springs, and 3 streams in the Shields River Basin (Basin) in southwest Montana. Samples were collected in 2013 to describe the chemical quality of groundwater in the Basin. Sampling was done to assess potential impacts to water quality from recent exploratory oil and gas drilling and to establish baseline water quality conditions. Wells were selected in areas near and away from oil and gas drilling and in areas susceptible to contamination. Water samples from surface water sites were collected in October to characterize base flow conditions. Physical characteristics of the land surface, soils, and shallow aquifers were used to assess groundwater susceptibility to contamination from the land surface. This analysis was completed using GIS. Samples were analyzed for major ions, trace metals, water isotopes of oxygen and hydrogen. A subset (24) of samples were analyzed for tritium and organic constituents (GRO, DRO, BTEX, methane, ethylene, and ethane). One sample exceeded the human health drinking water standard for selenium. Dissolved methane and ethylene gas were detected in six samples at concentrations less than 0.184 milligrams per liter. Three locations were resampled in 2014, and no methane or ethylene was detected. Shallow groundwater and streams are generally calcium- or sodium-bicarbonate type water with total dissolved solids concentration less than 300 milligrams per liter. Some wells produce either sodium-chloride or sodium-sulfate type water suggesting slower flow paths and more rock-water interaction. Tritium concentrations suggest that older water (TU< 0.8), recharged prior to the mid-1950’s, is generally sodium type, whereas younger water (TU > 4) is generally a calcium type. Water-quality data from this study were compared to available historic data in the Basin. Additionally, the USGS Produced Waters Geochemical database was queried for chemical data of produced waters from reservoir rocks throughout Montana and the surrounding states. Comparisons to historic and produced water chemical data suggest no impact to shallow groundwater quality from exploratory oil and gas drilling.
Resumo:
The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.