991 resultados para Resin-based cements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this clinical study is to evaluate the 2-year term results of gingival recession (GR) associated with non-carious cervical lesions (NCCLs) treated by connective tissue graft (CTG) alone or in combination with a resin-modified glass ionomer restoration (CTG+R). Methods: Thirty-six patients with Miller Class I buccal GR associated with NCCLs completed the follow-up. The defects were randomly assigned to receive either CTG or CTG+R. Bleeding on probing (BOP), probing depth (PD), relative GR, clinical attachment level (CAL), and cervical lesion height coverage were measured at baseline, 6 months, 1 year, and 2 years after treatment. Results: Both groups showed statistically significant gains in CAL and soft-tissue coverage. The differences between groups were not statistically significant in BOP, PD, relative GR, or CAL after 2 years. Cervical lesion height coverage was 79.31% ± 18.51% for CTG and 71.95% ± 13.25% for CTG+R (P >0.05). Estimated root coverage was 91.56% ± 11.74% for CTG and 93.29% ± 7.97% for CTG+R (P ≥0.05). Conclusions: Within the limits of the present study, it can be concluded that both procedures provide comparable soft tissue coverage after 2 years of follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the addition of sodium trimetaphosphate (TMP) with or without fluoride on enamel demineralization, and the hardness and release of fluoride and TMP of resin composites. Methods: Bovine enamel slabs (4x3x3 mm) were prepared and selected based on initial surface hardness (n= 96). Eight experimental resin composites were formulated, according to the combination of TMP and sodium fluoride (NaF): TMP/NaF-free (control), 1.6% sodium fluoride (NaF), and 1.5%, 14.1% and 36.8% TMP with and without 1.6% NaF. Resin composite specimens (n= 24) were attached to the enamel slabs with wax and the sets were subjected to pH cycling. Next, surface and cross-sectional hardness and fluoride content of enamel as well as fluoride and TNT release and hardness of the materials were evaluated. Data were statistically analyzed using ANOVA (P< 0.05). Results: The presence of fluoride in enamel was similar in fluoridated resin composites (P> 0.05), but higher than in the other materials (P< 0.05). The combination of 14.1% TMP and fluoride resulted in less demineralization, especially on lesion surface (P< 0.05). The presence of TMP increased fluoride release from the materials and reduced their hardness.