980 resultados para Resilience engineering perspectives
Resumo:
1
Resumo:
Estudi elaborat a partir d’una estada al Center Biomedical Engineering (CBE) del Massachussets Institute of Technology (MIT), durant els mesos de juliol i agost del 2005. S’investiga una metodologia amb l’objectiu d’obtenir biomaterials que puguin actuar de bastida en la interfície os/cartílag, afavorint la diferenciació i creixement cel·lular de cartílag ossificat que pugui actuar d’unió entre l’articulació i l’os. S’experimenta una metodologia per a establir quins són els péptids afavoridors de la formació de teixit ossi utilitzats en materials d’hidroxiapatita. Es conclou que la tecnologia desenvolupada permet disposar d’una plataforma per assajar l’estudi del signaling sobre cèl·lules embrionàries, que permeti desenvolupar materials amb més capacitat diferenciadora.
Resumo:
Report for the scientific sojourn carried out at Albert Einstein Institut in Germany, from April to July 2006.
Resumo:
Les études de cas en psychothérapie connaissent une phase de renouveau auprès des chercheurs en psychothérapie et des psychothérapeutes. L'auteur discute de deux paradigmes qui ont grandement influencé ce nouvel intérêt : le paradigme pragmatique et le paradigme qui vise la construction d'une théorie. L'article présente les origines, les développements et les concepts clés des deux paradigmes et leurs spécificités méthodologiques et éthiques. Des exemples d'études de cas ou de modèles au sein des paradigmes sont évoqués. L'influence différentielle des courants postmodernes sur les deux paradigmes, et leurs apports respectifs dans le champ des méthodes d'études de cas, sont discutés et évalués par rapport aux implications pour le chercheur et le psychothérapeute.
Resumo:
Pest Control is treated as a economic problem. The social and the private perspectives differ due to the consideration of the environmental and social impacts as well as technical aspects such as resistance, resurgence and secondary pests. A mathematical model is developed to determine and compare the social and the private optimum control strategies (which define the Economic Thereshold Levels) for the velvetbean caterpillar on soybeans in Brazil. The crop/pest system incorporates effects of predators and parasites, the soybean natural capacity to compensate for injury and the pesticide effects on both pests and its natural enemies; in the social case, the environmental and social impacts and the effects of pest resistance to the pesticide are incorporated. Consideration of density dependence, weather effects, randomnes of pest attack and risk aversion are discussed. The results can be compared with current control practices and IPM programme recomendations.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.