362 resultados para Remodelling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AGC1 deficiency is a rare demyelinating disease caused by mutations in the SLC25A12 gene, which encodes for the mitochondrial glutamate-aspartate carrier 1 (AGC1/Alarar), highly expressed in the central nervous system. In neurons, impairment in AGC1 activity leads to reduction in N-acetyl-aspartate, the main lipid precursor for myelin synthesis (Profilo et al., 2017); in oligodendrocytes progenitors cells, AGC1 down regulation has been related to early arrest proliferation and premature differentiation (Petralla et al., 2019). Additionally, in vivo AGC1 deficiency models i.e., heterozygous mice for AGC1 knock-out and neurospheres from their subventricular zone, respectively, showed a global decrease in cells proliferation and a switch in neural stem cells (NSCs) commitment, with specific reduction in OPCs number and increase in neural and astrocytic pools (Petralla et al., 2019). Therefore, the present study aims to investigate the transcriptional and epigenetic regulation underlying the alterations observed in OPCs and NSCs biological mechanisms, in either AGC1 deficiency models of Oli-neu cells (murine immortalized oligodendrocytes precursors cells), partially silenced by a shRNA for SLC25A12 gene, and SVZ-derived neurospheres from AGC1+/- mice. Western blot and immunofluorescence analysis revealed significant variations in the expression of transcription factors involved in brain cells’ proliferation and differentiation, in association with altered histone post-translational modifications, as well as histone acetylases (HATs) and deacetylases (HDACs) activity/expression, suggesting an improper transcriptional and epigenetic regulation affecting both AGC1 deficiency in vitro models. Furthermore, given the large role of acetylation in controlling in specific time-windows OPC maturation (Hernandez and Casaccia; 2015), pharmacological HATs/HDACs inhibitions were performed, confirming the involvement of chromatin remodelling enzymes in the altered proliferation and early differentiation observed in the AGC1 deficiency models of siAGC1 Oli-neu cells and AGC1+/- mice-derived neurospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teeth, with their high mineralisation, incremental growth, and lack of remodelling, serve as biological archives that document an individual's development. This project aims to utilise the potential of teeth in bioarchaeological studies to achieve three primary objectives: 1) to investigate the application of histological and histochemical methods in reconstructing developmental bio-chronologies and early life histories; 2) to refine the temporal precision of isotopic analysis of dentine collagen by developing a novel protocol that integrates micro-sampling techniques with high-resolution histomorphometrics; and 3) to synthesise data from enamel and dentine for a comprehensive understanding of early life development and dietary transitions. This study adopts an integrated multidisciplinary bioarchaeological approach, conducting histomorphometric analysis on enamel and dentine across deciduous and permanent dentitions. It applies high-temporal resolution trace element analysis to enamel using LA-ICPMS and δ13C and δ15N isotope analyses through sequential micro-sampling to dentine of permanent teeth. Samples were selected from diverse archaeological contexts across the Italian peninsula, covering the Upper Palaeolithic, Copper Age, and Early Medieval periods, providing insight into diachronic variations in infant development and life history. Findings highlight the efficacy of histological and histochemical techniques in accurately determining growth rates, physiological stress, dietary shifts (particularly timing of weaning), and age at death in infant remains. The consistency and comparison between enamel and dentine underscores the enhanced insight obtained from integrating information from both tissues. Importantly, the newly proposed protocol significantly improves the temporal accuracy of dentine collagen analysis, facilitating precise chronological placement of the results over broad developmental associations. This study reaffirms the significance of teeth as valuable bioarchaeological instruments. By introducing and testing multidisciplinary methods, it provides deeper insights into early life history and cultural practices across diverse chronological contexts, highlighting the importance of advanced methodologies in extracting detailed, accurate, and nuanced information from past populations.