956 resultados para Rede Neuronal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho reuniu três metodologias conhecidas para o estudo de solos, todas associadas às técnicas de sensoriamento remoto. Para uma mesma área, os solos foram relacionados aos seus parâmetros espectrais obtidos digitalmente de imagens de satélite; os índices de drenagem da área foram também relacionados aos respectivos solos; a conhecida relação entre tipos de cerrado e respectivos solos suporte foi também estudada. Para cada situação foi preparado um mapa de solos, que se aproximava do mapa já existente. Quando as informações de tais mapas foram agregadas em um único mapa, a aproximação com o mapa de controle foi altamente satisfatória evidenciando a aplicabilidade da metodologia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de utilizar parâmetros da drenagem determinados em fotografias aéreas em áreas de latossolos argilosos e solos podzólicos de textura arenosa/média ou média/argilosa, assim como dos solos rasos associados, estudou-se quantitativamente a composição das redes de drenagem de unidades de mapeamento desses solos. A área de estudo, com tamanho aproximado de 600km², está localizada na Depressão Periférica Paulista, na região de Iracemápolis-SP. Foi feito o estudo das bacias hidrográficas de terceira ordem de ramificação, selecionadas pelo princípio da semelhança geométrica. Analisaram-se o número, comprimento total e comprimento médio de segmentos de rios, em amostras constituídas por bacias e por amostras circulares. Os valores da densidade de drenagem, tanto das bacias como das áreas circulares, mostraram diferenças entre os grupos de latossolos argilosos e os grupos de solos podzólicos. Além disso, esse parâmetro distinguiu também as unidades de mapeamento compostas, principalmente para solos podzólicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubule-associated protein 1b, also named MAP5 and MAP1x, is essential for neuronal differentiation. In kitten cerebellum, this protein is partially phosphorylated. During early postnatal development, a phosphorylated form was localized prominently in growing parallel fibres and in mitotic spindles of neuroblasts in the germinal layer, whereas a non-phosphorylated MAP1b form was found in dendrites, perikarya and axons. The MAP1x epitope showed the same immunohistochemical distribution, as seen for phosphorylated MAP1b, while its recognition on immunoblots was independent of phosphorylation. It is concluded that post-translational modifications and conformation of MAP1b influence the immunological detection of MAP1b, and are essential in the neuronal growth processes and mitosis. The antibody against the phosphorylated MAP1b may represent a good marker to identify dividing neurones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 1985, 50,356 children and adolecents from 105 public schools of Belo Horizonte, Minas Gerais State were questioned about or examined for head lice (Pediculus capitis). The mean prevalence of pediculosis, obtainde from the questionnaires and sometimes confirmed by head inspections, was 7.7% or else 10.2% when adjusted to 38,311 respondents. Current and past infestations combined - within a period of three months before survey - revealed a total prevalence of 57.4%. Significant differences were observed among socioeconomic levels, and grades of school age. The more prevalent categories among the factors studied were: sex - femal: 9.2% (P<0.001); ethnic group - white: 10.0% (P<0.001); hair length - long: 9.5% (P<0.05); year age-group - 1-5 years: 19.2% (P<0.001), with a peak in the 5th year (21.3%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of cell type-specific Na+,K+-ATPase isozymes in function-related glucose metabolism was studied using differentiated rat brain cell aggregate cultures. In mixed neuron-glia cultures, glucose utilization, determined by measuring the rate of radiolabeled 2-deoxyglucose accumulation, was markedly stimulated by the voltage-dependent sodium channel agonist veratridine (0.75 micromol/L), as well as by glutamate (100 micromol/L) and the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) (10 micromol/L). Significant stimulation also was elicited by elevated extracellular potassium (12 mmol/L KCl), which was even more pronounced at 30 mmol/L KCl. In neuron-enriched cultures, a similar stimulation of glucose utilization was obtained with veratridine, specific ionotropic glutamate receptor agonists, and 30 mmol/L but not 12 mmol/L KCl. The effects of veratridine, glutamate, and NMDA were blocked by specific antagonists (tetrodotoxin, CNQX, or MK801, respectively). Low concentrations of ouabain (10(-6) mol/L) prevented stimulation by the depolarizing agents but reduced only partially the response to 12 mmol/L KCl. Together with previous data showing cell type-specific expression of Na+,K+-ATPase subunit isoforms in these cultures, the current results support the view that distinct isoforms of Na+,K+-ATPase regulate glucose utilization in neurons in response to membrane depolarization, and in glial cells in response to elevated extracellular potassium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic assembly and disassembly of microtubules is essential for cell division, cell movements, and intracellular transport. In the developing nervous system, microtubule dynamics play a fundamental role during neurite outgrowth, elongation, and branching, but the molecular mechanisms involved are unknown. SCG10 is a neuron-specific protein that is membrane-associated and highly enriched in growth cones. Here we show that SCG10 binds to microtubules, inhibits their assembly, and can induce microtubule disassembly. We also show that SCG10 overexpression enhances neurite outgrowth in a stably transfected neuronal cell line. These data identify SCG10 as a key regulator of neurite extension through regulation of microtubule instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making the switch: Compounds 1 and 2 are used as metabolic markers for NMR detection. When neuronal cells switch to a glycolytic state, an uneven distribution of (13) C in the N-acetyl group results, thus giving a mixture of the metabolites 1 and 2. It is therefore possible to monitor flux through different metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, and the hexosamine biosynthetic pathway, using a single molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Els malalts crítics presenten sovint seqüeles cognitives a llarg termini, l’aplicació de ventilació mecànica (VM) pot contribuir al seu desenvolupament. El principal objectiu del nostre estudi fou investigar l’efecte de dos patrons de ventilació (volum corrent elevat/baix) en l’activació neuronal (expressió de c-fos) en determinades àrees cerebrals en un model en rates. Després de 3 hores sota VM, es va trobar activació neuronal; la seva intensitat va ser superior al grup de volum corrent elevat, suggerint un efecte iatrogènic de la VM al cervell. Aquests resultats suggereixen que cal aprofundir en l’estudi del crosstalk cervell-pulmó en malalts crítics sota VM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic beta-cells, we evaluated their role by generating a model of insulin-secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature beta-cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose-induced insulin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objectiu d’aquest estudi es investigar l’organització cortical junt amb la connectivitat còrtico-subcortical en subjectes sans, com a estudi preliminar. Els mapes corticals s’han fet per TMS navegada, i els punts motors obtinguts s’han exportant per estudi tractogràfic i anàlisi de las seves connexions. El coneixement precís de la localització de l’àrea cortical motora primària i les seves connexions es la base per ser utilitzada en estudis posteriors de la reorganització cortical i sub-cortical en pacients amb infart cerebral. Aquesta reorganització es deguda a la neuroplasticitat i pot ser influenciada per els efectes neuromoduladors de la estimulació cerebral no invasiva.