899 resultados para Recursive Partitioning and Regression Trees (RPART)
Resumo:
Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652ma.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early-middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitudedependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200-7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech (Fagus) forest development which in return caused a distinctive yew (Taxus) decline.We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).
Resumo:
Adding to the on-going debate regarding vegetation recolonisation (more particularly the timing) in Europe and climate change since the Lateglacial, this study investigates a long sediment core (LL081) from Lake Ledro (652ma.s.l., southern Alps, Italy). Environmental changes were reconstructed using multiproxy analysis (pollen-based vegetation and climate reconstruction, lake levels, magnetic susceptibility and X-ray fluorescence (XRF) measurements) recorded climate and land-use changes during the Lateglacial and early-middle Holocene. The well-dated and high-resolution pollen record of Lake Ledro is compared with vegetation records from the southern and northern Alps to trace the history of tree species distribution. An altitudedependent progressive time delay of the first continuous occurrence of Abies (fir) and of the Larix (larch) development has been observed since the Lateglacial in the southern Alps. This pattern suggests that the mid-altitude Lake Ledro area was not a refuge and that trees originated from lowlands or hilly areas (e.g. Euganean Hills) in northern Italy. Preboreal oscillations (ca. 11 000 cal BP), Boreal oscillations (ca. 10 200, 9300 cal BP) and the 8.2 kyr cold event suggest a centennial-scale climate forcing in the studied area. Picea (spruce) expansion occurred preferentially around 10 200 and 8200 cal BP in the south-eastern Alps, and therefore reflects the long-lasting cumulative effects of successive boreal and the 8.2 kyr cold event. The extension of Abies is contemporaneous with the 8.2 kyr event, but its development in the southern Alps benefits from the wettest interval 8200-7300 cal BP evidenced in high lake levels, flood activity and pollen-based climate reconstructions. Since ca. 7500 cal BP, a weak signal of pollen-based anthropogenic activities suggest weak human impact. The period between ca. 5700 and ca. 4100 cal BP is considered as a transition period to colder and wetter conditions (particularly during summers) that favoured a dense beech (Fagus) forest development which in return caused a distinctive yew (Taxus) decline.We conclude that climate was the dominant factor controlling vegetation changes and erosion processes during the early and middle Holocene (up to ca. 4100 cal BP).
Resumo:
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source-to-sink connectivity at the catchment-wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de-coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events.
Resumo:
Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.
Resumo:
Environmental data sets of pollutant concentrations in air, water, and soil frequently include unquantified sample values reported only as being below the analytical method detection limit. These values, referred to as censored values, should be considered in the estimation of distribution parameters as each represents some value of pollutant concentration between zero and the detection limit. Most of the currently accepted methods for estimating the population parameters of environmental data sets containing censored values rely upon the assumption of an underlying normal (or transformed normal) distribution. This assumption can result in unacceptable levels of error in parameter estimation due to the unbounded left tail of the normal distribution. With the beta distribution, which is bounded by the same range of a distribution of concentrations, $\rm\lbrack0\le x\le1\rbrack,$ parameter estimation errors resulting from improper distribution bounds are avoided. This work developed a method that uses the beta distribution to estimate population parameters from censored environmental data sets and evaluated its performance in comparison to currently accepted methods that rely upon an underlying normal (or transformed normal) distribution. Data sets were generated assuming typical values encountered in environmental pollutant evaluation for mean, standard deviation, and number of variates. For each set of model values, data sets were generated assuming that the data was distributed either normally, lognormally, or according to a beta distribution. For varying levels of censoring, two established methods of parameter estimation, regression on normal ordered statistics, and regression on lognormal ordered statistics, were used to estimate the known mean and standard deviation of each data set. The method developed for this study, employing a beta distribution assumption, was also used to estimate parameters and the relative accuracy of all three methods were compared. For data sets of all three distribution types, and for censoring levels up to 50%, the performance of the new method equaled, if not exceeded, the performance of the two established methods. Because of its robustness in parameter estimation regardless of distribution type or censoring level, the method employing the beta distribution should be considered for full development in estimating parameters for censored environmental data sets. ^
Resumo:
We present a series of three-dimensional numerical models investigating the effects of metamorphic strengthening and weakening on the geodynamic evolution of convergent orogens that are constrained by observations from an exposed mid-crustal section in the New England Appalachians. The natural mid-crustal section records evidence for spatially and temporally variable mid-crustal strength as a function of metamorphic grade during prograde polymetamorphism. Our models address changes in strain rate partitioning and topographic uplift as a function of strengthening/weakening in the middle crust, as well as the resultant changes in deformation kinematics and potential exhumation patterns of high-grade metamorphic rock. Results suggest that strengthening leads to strain rate partitioning around the zone and suppressed topographic uplift rates whereas weakening leads to strain rate partitioning into the zone and enhanced topographic uplift rates. Deformation kinematics recorded in the orogen are also affected by strengthening/weakening, with complete reversals in shear sense occurring as a function of strengthening/weakening without changes in plate boundary kinematics.
Resumo:
OBJECTIVE The aim of the study was to describe the (a) symptom experience of women with vulvar intraepithelial neoplasia and vulvar cancer (vulvar neoplasia) during the first week after hospital discharge, and (b) associations between age, type of disease, stage of disease, the extent of surgical treatment and symptom experience. METHODS This cross-sectional study was conducted in eight hospitals in Germany and Switzerland (Clinical Trial ID: NCT01300663). Symptom experience after surgical treatment in women with vulvar neoplasia was measured with our newly developed WOMAN-PRO instrument. Outpatients (n=65) rated 31 items. We used descriptive statistics and regression analysis. RESULTS The average number of symptoms reported per patient was 20.2 (SD 5.77) with a range of 5 to 31 symptoms. The three most prevalent wound-related symptoms were 'swelling' (n=56), 'drainage' (n=54) and 'pain' (n=52). The three most prevalent difficulties in daily life were 'sitting' (n=63), 'wearing clothes' (n=56) and 'carrying out my daily activities' (n=51). 'Tiredness' (n=62), 'insecurity' (n=54) and 'feeling that my body has changed' (n=50) were the three most prevalent psychosocial symptoms/issues. The most distressing symptoms were 'sitting' (Mean 2.03, SD 0.88), 'open spot (e.g. opening of skin or suture)' (Mean 1.91, SD 0.93), and 'carrying out my daily activities' (Mean 1.86, SD 0.87), which were on average reported as 'quite a bit' distressing. Negative associations were found between psychosocial symptom experience and age. CONCLUSIONS WOMAN-PRO data showed a high symptom prevalence and distress, call for a comprehensive symptom assessment, and may allow identification of relevant areas in symptom management.
Resumo:
Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.
Resumo:
This talk combines concepts of the copying of manuscripts in the age before mechanical reproduction (as described in W. Benjamin’s famous Artwork-essay), of the emergence of non-vertical evolution (as to be found in textual ‘contamination’ and in horizontal gene transfer alike), and of the electronic reproduction of such phenomena (as presented in scholarly digital editions and phylogenetic trees). The guiding idea is that ‘copying’, ‘emergence’, and ‘(digital) reproduction’ enable variation depending on particular physical or biological forms, on contextual or environmental conditions, as well as on user habits or receptive fields. – Is it possible to develop a theory of copying and reproduction on this base? The material of the talk will be drawn from the Parzival-Project, a critical electronic edition of an Arthurian romance, composed by the German poet Wolfram von Eschenbach shortly after 1200 and transmitted in over eighty witnesses.
Resumo:
INTRODUCTION Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').
Resumo:
We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
Resumo:
BACKGROUND Five-aminolevulinic acid (Gliolan, medac, Wedel, Germany, 5-ALA) is approved for fluorescence-guided resections of adult malignant gliomas. Case reports indicate that 5-ALA can be used for children, yet no prospective study has been conducted as of yet. As a basis for a study, we conducted a survey among certified European Gliolan users to collect data on their experiences with children. METHODS Information on patient characteristics, MRI characteristics of tumors, histology, fluorescence qualities, and outcomes were requested. Surgeons were further asked to indicate whether fluorescence was "useful", i.e., leading to changes in surgical strategy or identification of residual tumor. Recursive partitioning analysis (RPA) was used for defining cohorts with high or low likelihoods for useful fluorescence. RESULTS Data on 78 patients <18 years of age were submitted by 20 centers. Fluorescence was found useful in 12 of 14 glioblastomas (85 %), four of five anaplastic astrocytomas (60 %), and eight of ten ependymomas grades II and III (80 %). Fluorescence was found inconsistently useful in PNETs (three of seven; 43 %), gangliogliomas (two of five; 40 %), medulloblastomas (two of eight, 25 %) and pilocytic astrocytomas (two of 13; 15 %). RPA of pre-operative factors showed tumors with supratentorial location, strong contrast enhancement and first operation to have a likelihood of useful fluorescence of 64.3 %, as opposed to infratentorial tumors with first surgery (23.1 %). CONCLUSIONS Our survey demonstrates 5-ALA as being used in pediatric brain tumors. 5-ALA may be especially useful for contrast-enhancing supratentorial tumors. These data indicate controlled studies to be necessary and also provide a basis for planning such a study.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
OBJECTIVES To determine the relationship between nasolabial symmetry and esthetics in subjects with orofacial clefts. MATERIAL AND METHODS Eighty-four subjects (mean age 10 years, standard deviation 1.5) with various types of nonsyndromic clefts were included: 11 had unilateral cleft lip (UCL); 30 had unilateral cleft lip and alveolus (UCLA); and 43 had unilateral cleft lip, alveolus, and palate (UCLAP). A 3D stereophotogrammetric image of the face was taken for each subject. Symmetry and esthetics were evaluated on cropped 3D facial images. The degree of asymmetry of the nasolabial area was calculated based on all 3D data points using a surface registration algorithm. Esthetic ratings of various elements of nasal morphology were performed by eight lay raters on a 100 mm visual analog scale. Statistical analysis included ANOVA tests and regression models. RESULTS Nasolabial asymmetry increased with growing severity of the cleft (p = 0.029). Overall, nasolabial appearance was affected by nasolabial asymmetry; subjects with more nasolabial asymmetry were judged as having a less esthetically pleasing nasolabial area (p < 0.001). However, the relationship between nasolabial symmetry and esthetics was relatively weak in subjects with UCLAP, in whom only vermilion border esthetics was associated with asymmetry. CONCLUSIONS Nasolabial symmetry assessed with 3D facial imaging can be used as an objective measure of treatment outcome in subjects with less severe cleft deformity. In subjects with more severe cleft types, other factors may play a decisive role. CLINICAL SIGNIFICANCE Assessment of nasolabial symmetry is a useful measure of treatment success in less severe cleft types.