965 resultados para Recombinant congenic strains
Resumo:
A study was undertaken to compare the susceptibility of laboratory-reared female Lutzomyia longipalpis to infection by different species or strains of New World Leishmania. The sand flies proved to be highly susceptible to infection by a strain of Le. guyanensis, with flagellates developing in all (18/18) of the specimens examined. A lower infection rate of 37 per cents (10/27) was recorded in flies exposed to infection by a strain of Le. amazonensis. Flagellates developed in 13 per cents (6/46) of the sand flies that glood fed on dogs in the earlly stage of experimental infection with an old laboratory strain of Le. chagasi. In contrast, promastigotes did not develop in sand flies that blood fed on dogs with naturally acquired Le. chagasi. The naturally infected dogas were in an advanced stage of disease. Flagellates developed in 9// (3/32) of the sand flies that blood fed on lesions of hamsters infected with a strain of Le. braziliensis and in 9 per cents (3/34) of those that fed on hamsters with lesions due to a parasite fo the mexicana complex (strain MHOM/BR/73/BH121). Sand flies did not develop flagellate infections after blood feeding on hamsters bearing lesions induced by strain MHOM/BR/71/BR49. Factors influencing the susceptibility of Lu. longipalpis to infection by New World species of Leishmania are discussed.
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
The development in C3H mice of thirteen strains of Trypanosoma cruzi belonging to different zymodemes ans schizodemes was studied. Host mortality, virulence, histiotropism, parasitemia and polymorphism of the parasites were recorded. The strains were grouped into: a) high virulence - causing 100% mortality and characterized by predominance of bery broad trypomastigotes in the bloodstream at the end of infection; b) medium virulence - causing no mortality and with a predominance of broad trypomastigotes; c) low virulence - causing no mortality with blood forms not described due to the very low parasitemia. During 18 months maintenance the parasitemia curves were kept constant for all strains except one. A direct correlation between either zymodeme or schizodeme and experimental biological properties of T. cruzi strains was not found. However, the parasitemia was subpatent and patent for strains from zymodeme C and the others respectively. Furthermore the high virulence seems to be related to one of two shizodemes found within zymodeme B strains. All strains presenting patent parasitemia independent of shizodeme and ymodeme showed a myotropism towards heart and skeletal muscle with varible inflammatory intensity. The present study confirmed the heterogeneity found by isoenzyme and K-DNA patterns among the strains of T. cruzi isolated from chagasic patients in Bambuí, Minas Gerais State, Brasil.
Resumo:
The beta thyroid hormone receptor (TRbeta), but not TRalpha1, plays a specific role in mediating T(3)-dependent repression of hypothalamic TRH transcription. To investigate the structural basis of isoform specificity, we compared the transcriptional regulation and DNA binding obtained with chimeric and N-terminally deleted TRs. Using in vivo transfection assays to follow hypothalamic TRH transcription in the mouse brain, we found that TRbeta1 and chimeras with the TRbeta1 N terminus did not affect either transcriptional activation or repression from the rat TRH promoter, whereas N-terminally deleted TRbeta1 impaired T(3)-dependent repression. TRalpha1 or chimeras with the TRalpha1 N terminus reduced T(3)-independent transcriptional activation and blocked T(3)-dependent repression of transcription. Full deletion of the TRalpha1 N terminus restored ligand-independent activation of transcription. No TR isoform specificity was seen after transcription from a positive thyroid hormone response element. Gel mobility assays showed that all TRs tested bound specifically to the main negative thyroid hormone response element in the TRH promoter (site 4). Addition of neither steroid receptor coactivator 1 nor nuclear extracts from the hypothalamic paraventricular nuclei revealed any TR isoform specificity in binding to site 4. Thus N-terminal sequences specify TR T(3)-dependent repression of TRH transcription but not DNA recognition, emphasizing as yet unknown neuron-specific contributions to protein-promoter interactions in vivo.
Resumo:
OBJECTIVE: To assess the molecular epidemiology and risk factors of predominant clones and sporadic strains of methicillin-resistant Staphylococcus aureus (MRSA) in Swiss hospitals and to compare them with European strains of epidemic clones. MATERIAL AND METHODS: One-year national survey of MRSA cases. Analysis of epidemiological and molecular typing data (PFGE) of MRSA strains. RESULTS: In 1997, 385 cases of MRSA were recorded in the five Swiss university hospitals and in 47 community hospitals. Half of the cases were found in Geneva hospitals where MRSA was already known to be endemic. Molecular typing of 288 isolates (one per case) showed that 186 (65%) belong to four predominant clones, three of which were mostly present in Geneva hospitals. In contrast, the fourth clone (85 cases) was found in 23 hospitals (in one to 16 cases per hospital). The remaining 35% of the strains were clustered into 62 pulsed field gel electrophoresis types. They accounted for one to five patients per hospital and were defined as sporadic. Multivariate analysis revealed no independent risk factors for harboring a predominant versus a sporadic strain, except that transfer from a foreign hospital increases the risk of harboring a sporadic strain (OR, 42; 95% CI, 5-360). CONCLUSION: While cases with predominant clones were due to the local spread of these clones, most sporadic cases appear to be due to the continuous introduction of new strains into the country. With the exception of a transfer from a hospital outside Switzerland, no difference in the clinical or epidemiological characteristics was observed between patients harboring a predominant clone and those with a sporadic strain.
Resumo:
Peritoneal macrophage activation as measured by H2O2 release and histopathology was compared between Swiss mice and Calomys callosus, a wild rodent, reservoir of Trypanosoma cruzi, during the course of infection with four strains of this parasite. In mice F and Y strain infections result in high parasitemia and mortality while with silvatic strains Costalimai and M226 parasitemia is sub-patent, with very low mortality. H2O2 release peaked at 33,6 and 59 nM/2 x 10(elevado a sexta potência) cells for strains Y and F, respectively, 48 and 50 nM/2 x 10 (elevado a sexta potência) for strains Costalimai and M226, at different days after infection. Histopathological findings of myositis, myocarditis, necrotizing artheritis and abscence of macrophage parasitism were foud for strains F and Costalimai. Y strain infection presented moderate myocarditis and myositis, with parasites multiplying within macrophages. In C. callosus all four strains resulted in patent parasitemia wich was eventually overcome, with scarce mortality. H2O2 release for strains Y or F was comparable to that of mice-peaks of 27 and 53 nM/2 x 10 (elevado a sexta potência) cells, with lower values for strains Costalimai and M226 - 16.5 and 4.6 nM/2 x 10(elevado a sexta potência)cells, respectively. Histopathological lesions with Y and F strain injected animals were comparable to those of mice at the onset of infections; they subsided completely at the later stages with Y strain and partially with F strain infected C. callosus. In Costalimai infected C. callosus practically no histopathological alterations were observed.
Resumo:
Ectodermal organogenesis is regulated by inductive and reciprocal signalling cascades that involve multiple signal molecules in several conserved families. Ectodysplasin-A (Eda), a tumour necrosis factor-like signalling molecule, and its receptor Edar are required for the development of a number of ectodermal organs in vertebrates. In mice, lack of Eda leads to failure in primary hair placode formation and missing or abnormally shaped teeth, whereas mice overexpressing Eda are characterized by enlarged hair placodes and supernumerary teeth and mammary glands. Here, we report two signalling outcomes of the Eda pathway: suppression of bone morphogenetic protein (Bmp) activity and upregulation of sonic hedgehog (Shh) signalling. Recombinant Eda counteracted Bmp4 activity in developing teeth and, importantly, inhibition of BMP activity by exogenous noggin partially restored primary hair placode formation in Eda-deficient skin in vitro, indicating that suppression of Bmp activity was compromised in the absence of Eda. The downstream effects of the Eda pathway are likely to be mediated by transcription factor nuclear factor-kappaB (NF-kappaB), but the transcriptional targets of Edar have remained unknown. Using a quantitative approach, we show in cultured embryonic skin that Eda induced the expression of two Bmp inhibitors, Ccn2/Ctgf (CCN family protein 2/connective tissue growth factor) and follistatin. Moreover, our data indicate that Shh is a likely transcriptional target of Edar, but, unlike noggin, recombinant Shh was unable to rescue primary hair placode formation in Eda-deficient skin explants.
Resumo:
BACKGROUND: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. RESULTS: Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependent manner. More than 90% of transduced cells were small and medium sized neurons (< 700 microm 2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (approximately 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell types. CONCLUSION: We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain.