991 resultados para Receptor Subunit Isoforms
Resumo:
Low-frequency thalamocortical oscillations that underlie drowsiness and slow-wave sleep depend on rhythmic inhibition of relay cells by neurons in the reticular nucleus (RTN) under the influence of corticothalamic fibers that branch to innervate RTN neurons and relay neurons. To generate oscillations, input to RTN predictably should be stronger so disynaptic inhibition of relay cells overcomes direct corticothalamic excitation. Amplitudes of excitatory postsynaptic conductances (EPSCs) evoked in RTN neurons by minimal stimulation of corticothalamic fibers were 2.4 times larger than in relay neurons, and quantal size of RTN EPSCs was 2.6 times greater. GluR4-receptor subunits labeled at corticothalamic synapses on RTN neurons outnumbered those on relay cells by 3.7 times, providing a basis for differences in synaptic strength.
Resumo:
Alternative splicing leads to the expression of multiple isoforms of the subunits (IFNAR1 and IFNAR2) of the type I IFN receptor. Here we describe two transcripts representing extracellular forms of ovine IFNAR1 and show that soluble extracellular forms of both IFNAR2 and IFNAR1, prepared in recombinant form in Escherichia coli, have antiviral (AV) activity in the absence of IFN. Exposure of Madin-Darby bovine kidney cells to the extracellular domain (R2E) of IFNAR2 at concentrations as low as 10 nM afforded complete protection against vesicular stomatitis virus and led to the rapid activation of the transcription factors ISGF3 and GAF. Although R2E can bind IFN (Kd ≈70 nM), activity was observed irrespective of whether or not ligand was present. R2E was inactive on mouse L929 cells but active on L929 cells expressing a membraneanchored, ovine/human chimeric IFNAR2 with an ovine extracellular domain. The data suggest that AV activity is conferred by the ability of soluble R2E to associate with the transfected IFNAR2 subunit rather than resident murine IFNAR1. Soluble extracellular forms of IFNAR1 have lower AV activity than R2E on Madin-Darby bovine kidney cells but are less species-specific and protect wild-type L929 cells as efficiently as the transfected cell line, presumably by interacting with one of the murine receptor subunits.
Resumo:
In normal rats and mice, immunostaining with specific antibodies revealed that nuclei of most prostatic epithelial cells harbor estrogen receptor β (ERβ). In rat ventral prostate, 530- and 549-aa isoforms of the receptor were identified. These sediment in the 4S region of low-salt sucrose gradients, indicating that prostatic ERβ does not contain the same protein chaperones that are associated with ERα. Estradiol (E2) binding and ERβ immunoreactivity coincide on the gradient, with no indication of ERα. In prostates from mice in which the ERβ gene has been inactivated (BERKO), androgen receptor (AR) levels are elevated, and the tissue contains multiple hyperplastic foci. Most epithelial cells express the proliferation antigen Ki-67. In contrast, prostatic epithelium from wild-type littermates is single layered with no hyperplasia, and very few cells express Ki-67. Rat ventral prostate contains an estrogenic component, which comigrates on HPLC with the testosterone metabolite 5α-androstane-3β,17β-diol (3βAdiol). This compound, which competes with E2 for binding to ERβ and elicits an estrogenic response in the aorta but not in the pituitary, decreases the AR content in prostates of wild-type mice but does not affect the elevated levels seen in ERβ knockout (BERKO) mice. Thus ERβ, probably as a complex with 3βAdiol, is involved in regulating the AR content of the rodent prostate and in restraining epithelial growth. These findings suggest that ligands specific for ERβ may be useful in the prevention and/or clinical management of prostatic hyperplasia and neoplasia.
Resumo:
Inflammatory responses in many cell types are coordinately regulated by the opposing actions of NF-κB and the glucocorticoid receptor (GR). The human glucocorticoid receptor (hGR) gene encodes two protein isoforms: a cytoplasmic alpha form (GRα), which binds hormone, translocates to the nucleus, and regulates gene transcription, and a nuclear localized beta isoform (GRβ), which does not bind known ligands and attenuates GRα action. We report here the identification of a tumor necrosis factor (TNF)-responsive NF-κB DNA binding site 5′ to the hGR promoter that leads to a 1.5-fold increase in GRα mRNA and a 2.0-fold increase in GRβ mRNA in HeLaS3 cells, which endogenously express both GR isoforms. However, TNF-α treatment disproportionately increased the steady-state levels of the GRβ protein isoform over GRα, making GRβ the predominant endogenous receptor isoform. Similar results were observed following treatment of human CEMC7 lymphoid cells with TNF-α or IL-1. The increase in GRβ protein expression correlated with the development of glucocorticoid resistance.
Resumo:
GM1-ganglioside receptor binding by the B subunit of cholera toxin (CtxB) is widely accepted to initiate toxin action by triggering uptake and delivery of the toxin A subunit into cells. More recently, GM1 binding by isolated CtxB, or the related B subunit of Escherichia coli heat-labile enterotoxin (EtxB), has been found to modulate leukocyte function, resulting in the down-regulation of proinflammatory immune responses that cause autoimmune disorders such as rheumatoid arthritis and diabetes. Here, we demonstrate that GM1 binding, contrary to expectation, is not sufficient to initiate toxin action. We report the engineering and crystallographic structure of a mutant cholera toxin, with a His to Ala substitution in the B subunit at position 57. Whereas the mutant retained pentameric stability and high affinity binding to GM1-ganglioside, it had lost its immunomodulatory activity and, when part of the holotoxin complex, exhibited ablated toxicity. The implications of these findings on the mode of action of cholera toxin are discussed.
Resumo:
Two isoforms of the human growth hormone receptor (hGHR), which differ in the presence (hGHRwt) or absence (hGHRd3) of exon 3, are expressed in the placenta. Specifically, three expression patterns are observed: only hGHRwt, only hGHRd3, or an approximately 1:1 combination of both isoforms. We investigated several potential regulatory mechanisms which might account for the expression of the hGHR isoforms. The frequency of hGHRd3 expression did not change when placentas from differing stages of gestation were examined, suggesting splicing was not developmentally regulated. However, when hGHR isoform expression patterns were examined in each component of a given placenta, it was evident that alternative splicing of exon 3 is individual-specific. Surprisingly, the individual-specific regulation of hGHR isoforms appears to be the result of a polymorphism in the hGHR gene. We analyzed hGHRwt and hGHRd3 expression in Hutterite pedigrees, and our results are consistent with a simple Mendelian inheritance of two differing alleles in which exon 3 is spliced in an "all-or-none" fashion. We conclude the alternative splicing of exon 3 in hGHR transcripts is the result of an unusual polymorphism which significantly alters splicing of the hGHR transcript and that the relatively high frequency (approximately 10%) of homozygous hGHRd3 expression suggests the possibility it may play a role in polygenic determined events.
Resumo:
Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.
Resumo:
A study was made of the effects of 5-hydroxytryptamine (5HT) on homomeric neuronal nicotinic receptors (nAcChoR) expressed in Xenopus oocytes after injection of cDNA encoding the wild-type chicken alpha(7) subunit. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by 5HT in a reversible and dose-dependent manner, with a half-inhibitory concentration (IC50) of 56 microM and a Hill coefficient (nH) of 1.2. The inhibition of IAcCho by 5HT was noncompetitive and voltage independent, a behavior incompatible with a channel blockade mechanism. 5HT alone did not elicit membrane currents in oocytes injected with the wild-type alpha(7) subunit cDNA. In contrast, 5HT elicited membrane currents (I5HT) in oocytes injected with cDNA encoding an alpha(7) mutant subunit with a threonine-for-leucine-247 substitution (L247T alpha(7)). I5HT was inhibited by the potent nicotinic receptor blockers alpha-bungarotoxin (100 nM) and methyllycaconitine (1 microM). Furthermore, the characteristics of I5HT, including its voltage dependence, were similar to those of IAcCho. The 5HT dose-I5HT response gave an apparent dissociation constant EC50 of 23.5 microM and a Hill coefficient nH of 1.7, which were not modified by the presence of AcCho. Similarly, the apparent affinity of L247T alpha(7) for AcCho as well as its cooperativity were not influenced by 5HT, indicating a lack of mutual interactions between 5HT and AcCho. These results show that 5HT is a potent noncompetitive antagonist of neuronal alpha(7) nAcChoR, but it becomes a noncompetitive agonist following mutation of the highly conserved leucine residue 247 located in the channel domain M2.
Resumo:
N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.
Resumo:
The pivotal role of G proteins in sensory, hormonal, inflammatory, and proliferative responses has provoked intense interest in understanding how they interact with their receptors and effectors. Nonetheless, the locations of the receptors and effector binding sites remain poorly characterized, although nearly complete structures of the alphabetagamma heterotrimeric complex are available. Here we apply evolutionary trace (ET) analysis [Lichtarge, O., Bourne, H. R. & Cohen, F. E. (1996) J. Mol. Biol. 257, 342-358] to propose plausible locations for these sites. On each subunit, ET identifies evolutionarily selected surfaces composed of residues that do not vary within functional subgroups and that form spatial clusters. Four clusters correctly identify subunit interfaces, and additional clusters on Galpha point to likely receptor or effector binding sites. Our results implicate the conformationally variable region of Galpha in an effector binding role. Furthermore the range of predicted interactions between the receptor and Galphabetagamma, is sufficiently limited that we can build a low resolution and testable model of the receptor-G protein complex.
Resumo:
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (mIg) molecule and the Ig-alpha/Ig-beta heterodimer, which functions as signaling subunit of the receptor. Stimulation of the BCR activates protein tyrosine kinases (PTKs) that phosphorylate a number of substrate proteins, including the Ig-alpha/Ig-beta heterodimer of the BCR itself. How the PTKs become activated after BCR engagement is not known at present. Here, we show that BCR-negative J558L cells treated with the protein tyrosine phosphatase inhibitor pervanadate/H2O2 display only a weak substrate phosphorylation. However, in BCR-positive transfectants of J558L, treatment with pervanadate/H2O2 induces a strong phosphorylation of several substrate proteins. Treatment with pervanadate/H2O2 does not result in receptor crosslinking, yet the pattern of protein phosphorylation is similar to that observed after BCR stimulation by antigen. The response requires cellular integrity because tyrosine phosphorylation of most substrates is not visible in cell lysates. Cells that express a BCR containing an Ig-alpha subunit with a mutated immunoreceptor tyrosine-based activation motif display a delayed response. The data suggest that, once expressed on the surface, the BCR organizes protein tyrosine phosphatases, PTKs, and their substrates into a transducer complex that can be activated by pervanadate/H202 in the absence of BCR crosslinking. Assembly of this preformed complex seems to be a prerequisite for BCR-mediated signal transduction.
Resumo:
Upon stimulation with anti-CD3, suppressor T-cell (Ts) hybridomas and homologous transfectants of T-cell receptor a (TCRalpha) cDNA in the T-cell hybridoma formed a 55-kDa TCRalpha chain derivative that bound both the monoclonal anti-TCRalpha chain and polyclonal antibodies against glycosylation inhibiting factor (GIF). The peptide is a subunit of antigen-specific suppressor T-cell factor (TsF), and is considered to be a posttranslationally-formed conjugate of TCRalpha chain with GIF peptide. The TCRalpha derivative is synthesized by the transfectant after stimulation with anti-CD3, and not derived from TCR present on the cell surface. Stimulation of the stable homologous transfectants with anti-CD3 induced translocation of the 13-kDa GIF peptide into endoplasmic reticulum (ER). When a helper Ts hybridoma or a stable transfectant of the same TCRalpha cDNA in a helper cell-derived TCRalpha- clone was stimulated with anti-CD3, translocation of GIF peptide was not detected, and these cells failed to secrete a TCRalpha derivative. However, further transfection of a chimeric cDNA encoding a procalcitonin-GIF fusion protein into the helper cell-derived stable transfectant of TCRalpha cDNA resulted in translocation of the GIF protein and formation of bioactive 55-kDa GIF. The results indicated that translocation of GIF peptide through ER is unique for Ts cells, and that this process is essential for the formation/secretion of the soluble form derivative of TCRalpha chain by T cells.
Resumo:
The mammalian phosphatidylinositol transfer proteins (PITP) and the yeast Saccharomyces cerevisiae PITP (SEC14p) that show no sequence homology both catalyze exchange of phosphatidylinositol (PI) between membranes compartments in vitro. In HL-60 cells where the cytosolic proteins are depleted by permeabilization, exogenously added PITPalpha is required to restore G protein-mediated phospholipase Cbeta (PLCbeta) signaling. Recently, a second mammalian PITPbeta form has been described that shows 77% identity to rat PITPalpha. We have examined the ability of the two mammalian PITPs and SEC14p to restore PLC-mediated signaling in cytosol-depleted HL-60 and RBL-2H3 cells. Both PITPalpha and PITPbeta isoforms as well as SEC14p restore G protein-mediated PLCbeta signaling with a similar potency. In RBL-2H3 cells, crosslinking of the IgE receptor by antigen stimulates inositol lipid hydrolysis by tyrosine phosphorylation of PLCgamma1. Permeabilization of RBL cells leads to loss of PLCgamma1 as well as PITP into the extracellular medium and this coincides with loss of antigen-stimulated lipid hydrolysis. Both PLCgamma1 and PITP were required to restore inositol lipid signaling. We conclude that (i) because the PI binding/transfer activities of PITP/SEC14p is the common feature shared by all three transfer proteins, it must be the relevant activity that determines their abilities to restore inositol lipid-mediated signaling and (ii) PITP is a general requirement for inositol lipid hydrolysis regardless of how and which isoform of PLC is activated by the appropriate agonist.
Resumo:
The alpha-subunit of the trimeric G-protein complex specific for taste receptor cells of the tongue, alpha-gustducin, is described here to be also expressed in the stomach and intestine. The alpha-gustducin-containing cells were identified as brush cells that are scattered throughout the surface epithelium of the gut and share structural features of taste receptor cells of the tongue. These findings provide clues to the long-sought molecular and cellular basis for chemoreception in the gut.
The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene.
Resumo:
Using the Escherichia coli lacZ gene to identify chromosomal loci that are transcriptionally active during growth arrest of NIH 3T3 fibroblasts, we found that an mRNA expressed preferentially in serum-deprived cells specifies the previously characterized alpha-receptor (alphaR) for platelet-derived growth factor (PDGF), which mediates mitogenic responsiveness to all PDGF isoforms. Both PDGFalphaR mRNA, which was shown to include a 111-nt segment encoded by a DNA region thought to contain only intron sequences, and PDGFalphaR protein accumulated in serum-starved cells and decreased as cells resumed cycling. Elevated PDGFalphaR gene expression during serum starvation was not observed in cells that had been transformed with oncogenes erbB2, src, or raf, which prevent starvation-induced growth arrest. Our results support the view that products of certain genes expressed during growth arrest function to promote, rather than restrict, cell cycling. We suggest that accumulation of the PDGFalphaR gene product may facilitate the exiting of cells from growth arrest upon mitogenic stimulation by PDGF, leading to the state of "competence" required for cell cycling.