915 resultados para Receiver complexity
High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter
Resumo:
The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps of the calibration of the alignment facility and estimate the errors made at each of these steps. We finally prove that the current facility is ready for the alignment of the flight instrument. Its angular accuracy is 23 μrad.
Resumo:
This paper focuses on adolescents who live in divided societies and how they navigate those divisions as they develop as civic actors. The study sites are Northern Ireland, South Africa, and the United States. In each setting we collected surveys, conducted focus groups with teachers and students, and followed students through the 9th and 10th grades in a case study classroom. In all locales, the students used materials from Facing History and Ourselves, and their teachers had participated in workshops on using those materials. In this paper we follow a case study student from the United States who provides a particularly complex look at issues of division and ethical civic development. The student, Pete, is a white immigrant from South Africa, studying in a multi-ethnic and multi-racial school in the United States. He confronts his South African legacies in the context of a foreign school system, which is working to help U.S. students confront their own legacies. Across two, one-semester, citizenship classes, Pete shows us the tension between an academic stance and a moral/emotional stance. When moral dilemmas become complex for him, he begins to lose his ability to judge. Teacher support and guidance is critical to help students like Pete learn to hold their moral ground, while understanding why others act as they do.
Resumo:
Mixed Media 42 x 46"
Resumo:
BACKGROUND: The procoagulant factor D-dimer has been shown to be associated with thrombus formation and degradation as seen with conditions such as myocardial infarction and unstable angina. Research has demonstrated that spousal dementia caregivers have elevated levels of D-dimer relative to their non-caregiving peers. OBJECTIVE: The objective of this study was to determine the relationship of basal level and laboratory stressor-induced concentration of D-dimer to severity of dementia in spousal care recipients. METHODS: Seventy-one elderly caregivers were compared with a comparison group of 37 non-caregivers (average age: 71 years). Clinical Dementia Rating (CDR), a global measure of dementia, was used to assess severity of spousal dementia. Plasma D-dimer was measured at baseline and in response to an acute speech stressor. RESULTS: Regression analysis revealed a significant positive association between severity of spousal dementia and caregiver D-dimer, both at baseline and in response to acute stress, while controlling for age. The model examined an exponential relationship, with D-dimer increasing progressively across the span of dementia stages. DISCUSSION: Dementia severity of the care recipient was associated with increasing hypercoagulability among elderly caregivers. Effect size estimates suggest that such D-dimer increases may have clinical implications, particularly among late-stage caregivers.
Resumo:
Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.
Resumo:
Although assessment of asthma control is important to guide treatment, it is difficult since the temporal pattern and risk of exacerbations are often unpredictable. In this Review, we summarise the classic methods to assess control with unidimensional and multidimensional approaches. Next, we show how ideas from the science of complexity can explain the seemingly unpredictable nature of bronchial asthma and emphysema, with implications for chronic obstructive pulmonary disease. We show that fluctuation analysis, a method used in statistical physics, can be used to gain insight into asthma as a dynamic disease of the respiratory system, viewed as a set of interacting subsystems (eg, inflammatory, immunological, and mechanical). The basis of the fluctuation analysis methods is the quantification of the long-term temporal history of lung function parameters. We summarise how this analysis can be used to assess the risk of future asthma episodes, with implications for asthma severity and control both in children and adults.
Resumo:
This dissertation investigates high performance cooperative localization in wireless environments based on multi-node time-of-arrival (TOA) and direction-of-arrival (DOA) estimations in line-of-sight (LOS) and non-LOS (NLOS) scenarios. Here, two categories of nodes are assumed: base nodes (BNs) and target nodes (TNs). BNs are equipped with antenna arrays and capable of estimating TOA (range) and DOA (angle). TNs are equipped with Omni-directional antennas and communicate with BNs to allow BNs to localize TNs; thus, the proposed localization is maintained by BNs and TNs cooperation. First, a LOS localization method is proposed, which is based on semi-distributed multi-node TOA-DOA fusion. The proposed technique is applicable to mobile ad-hoc networks (MANETs). We assume LOS is available between BNs and TNs. One BN is selected as the reference BN, and other nodes are localized in the coordinates of the reference BN. Each BN can localize TNs located in its coverage area independently. In addition, a TN might be localized by multiple BNs. High performance localization is attainable via multi-node TOA-DOA fusion. The complexity of the semi-distributed multi-node TOA-DOA fusion is low because the total computational load is distributed across all BNs. To evaluate the localization accuracy of the proposed method, we compare the proposed method with global positioning system (GPS) aided TOA (DOA) fusion, which are applicable to MANETs. The comparison criterion is the localization circular error probability (CEP). The results confirm that the proposed method is suitable for moderate scale MANETs, while GPS-aided TOA fusion is suitable for large scale MANETs. Usually, TOA and DOA of TNs are periodically estimated by BNs. Thus, Kalman filter (KF) is integrated with multi-node TOA-DOA fusion to further improve its performance. The integration of KF and multi-node TOA-DOA fusion is compared with extended-KF (EKF) when it is applied to multiple TOA-DOA estimations made by multiple BNs. The comparison depicts that it is stable (no divergence takes place) and its accuracy is slightly lower than that of the EKF, if the EKF converges. However, the EKF may diverge while the integration of KF and multi-node TOA-DOA fusion does not; thus, the reliability of the proposed method is higher. In addition, the computational complexity of the integration of KF and multi-node TOA-DOA fusion is much lower than that of EKF. In wireless environments, LOS might be obstructed. This degrades the localization reliability. Antenna arrays installed at each BN is incorporated to allow each BN to identify NLOS scenarios independently. Here, a single BN measures the phase difference across two antenna elements using a synchronized bi-receiver system, and maps it into wireless channel’s K-factor. The larger K is, the more likely the channel would be a LOS one. Next, the K-factor is incorporated to identify NLOS scenarios. The performance of this system is characterized in terms of probability of LOS and NLOS identification. The latency of the method is small. Finally, a multi-node NLOS identification and localization method is proposed to improve localization reliability. In this case, multiple BNs engage in the process of NLOS identification, shared reflectors determination and localization, and NLOS TN localization. In NLOS scenarios, when there are three or more shared reflectors, those reflectors are localized via DOA fusion, and then a TN is localized via TOA fusion based on the localization of shared reflectors.
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.