427 resultados para Reator fotoquímico
Resumo:
O presente trabalho foi desenvolvido no Centro de Raízes e Amidos Tropicais – CERAT, Na UNESP em Botucatu, estado de São Paulo onde foram realizados ensaios de fermentação alcoólica com hidrolisado de amido de mandioca. A fécula de mandioca foi utilizada como fonte de carboidrato para obtenção dos açúcares redutores consumidos no processo. Em um reator agitado foi produzido 12Kg de hidrolisado a partir de suspensão de fécula a 30% (p/p) utilizando enzimas alfa amilase na primeira etapa, seguida de amiloglucosidase na etapa posterior. As dosagens em unidades enzimáticas foram 2KNU.g-1 de amido e 2AGU.g-1 de amido respectivamente. O planejamento experimental considerou a realização de três ensaios de hidrolisados e três ensaios de fermentação a partir do mosto produzido; a) mosto aerado; b) com microaeração; c) em meio anaeróbio. Os ensaios foram realizados em erlenmeyers com 2,5 Kg de hidrolisado, ajustado a concentração de glicose a 100g.L-1 sendo inoculada a levedura do gênero Saccharomyces cerevisiae à taxa de 1,5% (p/p). Todos os erlenmeyers foram colocados sob agitação orbital e temperatura controlada de 30ºC sendo acompanhado o processo de fermentação através de coleta de amostras do mosto a cada hora. A aeração nos frascos erlenmeyers foi realizada através de mangueira coletora de válvula que regulava a vazão de ar. De acordo com os dados obtidos pode se concluir que o sistema anaeróbio em 32h foi o mais eficiente para a produção de etanol. Também foi possível observar que enquanto ocorre aeração no meio não se observa alteração significativa na concentração de etanol e quando cessa a aeração o meio torna se anaeróbio e tem início a produção de etanol. Quando aumenta a concentração de etanol no meio, o crescimento celular do sistema anaeróbio cai e etanol inibe a levedura, parando o crescimento celular.
Resumo:
Aiming to get the best economic advantage in ethanol production from cassava roots, this study presented a physiochemical characterization from two different types of solid waste in two types of processing of the raw materials in manufacturing ethanol. The processing of cassava roots begins with the disintegration and washing the roots with the addition of 20% more water to obtain a pulp which was treated and stirred in the reactor while adding enzyme α-amylase at a temperature of 90°C for 2 hours. Then we performed a pH adjustment while lowering the temperature to 60 ° C with the addition of the enzyme amiloglucosidase and then stirring for 14 hours. The hydrolyzate obtained was the source of two types of waste which are: i) Solid residue obtained after filtration of the hydrolyatze and ii) Solid waste obtained from filtering wine after alcoholic fermentation of the hydrolyzate with the addition of a dried yeast strain Y-940 manufactured by MAURI OF BRAZIL SA (2%) at a temperature of 25º C. The results of the laboratory analysis showed that the byproducts derived from the hydrolysis and fermentation showed very similar chemical compositions. With levels between 39 and 41% fiber, 0.5% lipids, 20 and 30% carbohydrates, protein 0.5 and 1.50, 6 and 8% acidity, and 20 and 30% soluble solids.
Resumo:
Este estudo avalia o emprego de um respirômetro automatizado com reator hermético rotacional para a avaliação dos parâmetros de O2 e CO2 e as demais variáveis obtidas durante a compostagem de resíduos de lodo de esgoto com podas de grama. O emprego do processo de compostagem tradicional apresenta um alto grau de empirismo utilizado no controle e avaliação do processo, que consiste na leitura diária de temperatura. Neste método os parâmetros de degradação são medidos na fase gasosa do processo de compostagem, determinando a evolução temporal de consumo de O2 e geração de CO2, tendo como vantagens uma maior representatividade, precisão e confiabilidade.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Embora os ftalatos sejam um dos poluentes mais frequentemente encontrados no meio ambiente, há escassez de dados na literatura sobre biorremediação de solos tropicais contaminados por esses compostos. Por esse motivo, este estudo avaliou a biorremediação de um solo contaminado com os plastificantes DEHP (Bis-2-etilhexilftalato), DIDP (Di-isodecilftalato) e álcool isobutílico, por uma indústria no Estado de São Paulo. A biorremediação ocorreu pela utilização de microrganismos presentes no solo e pela adição de inóculo adaptado em reator em fase de lama. O reator foi monitorado durante 120 dias, sendo corrigida apenas a umidade do solo. Os resultados indicaram que a biodegradação dos ftalatos seguiu uma cinética de primeira ordem e a biorremediação ocorreu na faixa de pH entre 7,4 e 8,4 e temperaturas entre 17 e 25 ºC, com eficiência de remoção de contaminantes acima de 70 %. Após 120 dias, o teor de DEHP estava abaixo de 4 mg kg-1, limite estipulado pela legislação brasileira para solo de uso residencial.
Resumo:
Embora os ftalatos sejam um dos poluentes mais frequentemente encontrados no meio ambiente, há escassez de dados na literatura sobre biorremediação de solos tropicais contaminados por esses compostos. Por esse motivo, este estudo avaliou a biorremediação de um solo contaminado com os plastificantes DEHP (Bis-2-etilhexilftalato), DIDP (Di-isodecilftalato) e álcool isobutílico, por uma indústria no Estado de São Paulo. A biorremediação ocorreu pela utilização de microrganismos presentes no solo e pela adição de inóculo adaptado em reator em fase de lama. O reator foi monitorado durante 120 dias, sendo corrigida apenas a umidade do solo. Os resultados indicaram que a biodegradação dos ftalatos seguiu uma cinética de primeira ordem e a biorremediação ocorreu na faixa de pH entre 7,4 e 8,4 e temperaturas entre 17 e 25 ºC, com eficiência de remoção de contaminantes acima de 70 %. Após 120 dias, o teor de DEHP estava abaixo de 4 mg kg-1, limite estipulado pela legislação brasileira para solo de uso residencial.
Resumo:
The aim of this work is to determine the interaction in terms of ozone transport between two metropolitan regions of São Paulo State: The Metropolitan Region of Campinas (MRC) and Metropolitan Region of São Paulo (MRSP), with different characteristics and dimensions. In order to describe the interaction between both regions, 3-D Eulerian photochemical CIT model was used with a new approach for São Paulo regions since most previous studies deal with individual areas considering the contribution of other areas only as boundary conditions. The results from the photochemical simulations showed that the ozone concentration in the MRC is associated to local emissions and the transport of ozone and its precursors from the MRSP, demonstrating the significant impact of a megacity in its neighborhood and the importance of meteorological and topography conditions in the transport of air pollutants from the local source to distant regions.
Resumo:
Com o objetivo de estudar a absorção e translocação de Ca, Co, Fe, K e Zn em Aechmea blanchetiana, plantas foram cultivadas in vitro em meios de cultivo contendo concentrações de Zn (0,0; 0,18; 1,8; 18 e 180 mg Zn L-1). Após 16 semanas de cultivo, os sistemas aéreo e radicular foram separados e determinadas à massa seca para massa de matéria seca e para a análise por ativação com nêutrons (AAN). O procedimento consistiu em irradiar amostras e padrões no reator nuclear de pesquisa IEA-R1 por 16 h para análise por espectrometria de raios gama. O controle dos resultados foi avaliado por meio das análises dos materiais de referência certificados, com desvios padrão relativo de 9,1 % e erros inferiores a 12,9 %. Os resultados das determinações dos elementos mostraram que o Zn alterou absorção e translocação de Ca, Co, Fe, K e Zn. A espécie apresentou alta quantidade de Zn nos sistemas aéreo e radicular indicando, possivelmente, ser bioacumuladora desse elemento.
Resumo:
A análise de elementos traço, tais como terras raras, TH, U, Ta, Hf, Ba, Rb e Ba, é uma ferramenta muito importante para estudos petrogenéticos. No intuito de estudar tais processos em diques do Enxame Serra do Mar (litoral de São Paulo e Rio de Janeiro), pertencente à Provincia Magmática do Paraná (PMP), uma das províncias de basaltos continentais mais expressivas do mundo, foram realizadas análises por ativação com nêutrons nestes diques. A técnica, empregada no Centro de Reator de pesquisa do Instituto de Pesquisas Energéticas e Nucleares, forneceu concentrações de elementos traço com os níveis de precisão de 10% e exatidão 9% os quais são adequadas para estudos petrogenéticos. Devido as baixas concentrações dos elementos analisados, a rotina experimental de preparação das amostras abrangeu processos bastantes cuidadosos para evitar contaminação. As amostras investigadas podem ser divididas em quatro grupos: rochas básicas (SiO2<55%) com Ti/Y<500; rochas intermediárias (55%
Resumo:
Desde hace ya algunos años la búsqueda de energías alternativas a los combustibles fósiles es uno de los grandes retos a nivel mundial. Según los datos de la Agencia Estadounidense de Información sobre la Energía (EIA), el consumo energético en el mundo fue de 18 TW en 2015 y se espera que este consumo se dispare hasta alcanzar los 25 TW en 2035 y los 30 TW en 2050. Parece, por tanto, necesario dar respuesta a esta demanda creciente, y no solo considerar de dónde va a proceder esta energía sino también cuáles van a ser las consecuencias derivadas de este aumento en el consumo energético. Ya en el año 2007 la Academia Sueca reconoció, con la concesión del Premio Nobel de la Paz al ex vicepresidente de Estados Unidos Al Gore y al Grupo Intergubernamental de expertos sobre Cambio Climático (IPCC) de Naciones Unidas, la necesidad de concienciación de que el modelo de desarrollo que tenemos es ecológicamente insostenible. En este contexto, las energías renovables en general y, la energía solar en particular, tienen mucho que ofrecer. Una de las mayores ventajas de la energía solar respecto a las otras fuentes de energía es su enorme potencial, que los investigadores que trabajan en este campo resumen con la siguiente afirmación: la cantidad de energía solar que la Tierra recibe en una hora es mayor que el consumo mundial en el planeta durante todo un año. Al hablar de energía solar se suele distinguir entre energía solar térmica y energía solar fotovoltaica; la primera consiste en aprovechar la energía del sol para convertirla en calor, mientras que la segunda pretende transformar la radiación solar en electricidad por medio de unos dispositivos llamados células fotovoltaicas. Y es precisamente en este campo donde se centra este proyecto. El fundamento científico en el que se basan las células fotovoltaicas es el efecto fotoeléctrico, descubierto por Becquerel en 1839. No obstante, tendrían que pasar más de cien años hasta que investigadores de los laboratorios Bell en 1954 desarrollaran una célula de silicio monocristalino con un rendimiento del 6%. Y en 1958, con el lanzamiento del satélite Vangard I equipado con paneles solares se pudo demostrar la viabilidad de esta tecnología. Desde entonces, la investigación en esta área ha permitido desarrollar dispositivos con eficiencias superiores al 20%. No obstante, la fotovoltaica tradicional basada en elementos semiconductores tipo silicio presenta algunos inconvenientes como el impacto visual de los parques solares, los costes elevados o los rendimientos no muy altos. El descubrimiento de materiales orgánicos semiconductores, reconocido con el Premio Nobel de Química a Heeger, MacDiarmid y Shirakawa en 1976, ha permitido ampliar el campo de la fotovoltaica, ofreciendo la posibilidad de desarrollar células solares orgánicas frente a las células tradicionales inorgánicas. Las células fotovoltaicas orgánicas resultan atractivas ya que, en principio, presentan ventajas como reducción de costes y facilidad de procesado: los materiales orgánicos se pueden elaborar mediante procesos de impresión y recubrimiento de alta velocidad, aerosoles o impresión por inyección y se podrían aplicar como una pintura sobre superficies, tejados o edificios. La transformación de la energía solar en corriente eléctrica es un proceso que transcurre en varias etapas: 1. Absorción del fotón por parte del material orgánico. 2. Formación de un excitón (par electrón-hueco), donde el electrón, al absorber el fotón, es promovido a un nivel energético superior dejando un hueco en el nivel energético en el que se encontraba inicialmente. 3. Difusión del excitón, siendo muy decisiva la morfología del dispositivo. 4. Disociación del excitón y transporte de cargas, lo que requiere movilidades altas de los portadores de cargas. 5. Recolección de cargas en los electrodos. En el diseño de las células solares orgánicas, análogamente a los semiconductores tipo p y tipo n inorgánicos, se suelen combinar dos tipos de materiales orgánicos: un material orgánico denominado dador, que absorbe el fotón y que a continuación deberá ceder el electrón a un segundo material orgánico, denominado aceptor. Para que la célula resulte eficaz es necesario que se cumplan simultáneamente varios requisitos: 1. La energía del fotón incidente debe ser superior a la diferencia de energía entre los orbitales frontera del material orgánico, el HOMO (orbital molecular ocupado de más alta energía) y el LUMO (orbital desocupado de menor energía). Para ello, se necesitan materiales orgánicos semiconductores que presenten una diferencia de energía entre los orbitales frontera (ELUMO-EHOMO= band gap) menor de 2 eV. Materiales orgánicos con estas características son los polímeros conjugados, donde alternan dobles enlaces carbono-carbono con enlaces sencillos carbono-carbono. Uno de los polímeros orgánicos más utilizados como material dador es el P3HT (poli-3-hexiltiofeno). 2. Tanto el material orgánico aceptor como el material orgánico dador deben presentar movilidades altas para los portadores de carga, ya sean electrones o huecos. Este es uno de los campos en los que los materiales orgánicos se encuentran en clara desventaja frente a los materiales inorgánicos: la movilidad de electrones en el silicio monocristalino es 1500 cm2V-1s-1 y en el politiofeno tan solo 10-5 cm2V-1s-1. La movilidad de los portadores de carga aparece muy relacionada con la estructura del material, cuanto más cristalino sea el material, es decir, cuanto mayor sea su grado de organización, mejor será la movilidad. Este proyecto se centra en la búsqueda de materiales orgánicos que puedan funcionar como dadores en el dispositivo fotovoltaico. Y en lugar de centrarse en materiales de tipo polimérico, se ha preferido explorar otra vía: materiales orgánicos semiconductores pero con estructura de moléculas pequeñas. Hay varias razones para intentar sustituir los materiales poliméricos por moléculas pequeñas como, por ejemplo, la difícil reproducibilidad de resultados que se encuentra con los materiales poliméricos y su baja cristalinidad, en general. Entre las moléculas orgánicas sencillas que pudieran ser utilizadas como el material dador en una célula fotovoltaica orgánica llama la atención el atractivo de las moléculas de epindolidiona y quinacridona. En los dos casos se trata de moléculas planas, con enlaces conjugados y que presentan anillos condensados, cuatro en el caso de la epindolidiona y cinco en el caso de la quinacridona. Además ambos compuestos aparecen doblemente funcionalizados con grupos dadores de enlace de hidrógeno (NH) y aceptores (grupos carbonilo C=O). Por su estructura, estas moléculas podrían organizarse tanto en el plano, mediante la formación de varios enlaces de hidrógeno intermoleculares, como en apilamientos verticales tipo columnar, por las interacciones entre las superficies de los anillos aromáticos que forman parte de su estructura (tres en el caso de la quinacridona) y dos (en el caso de la epindolidiona). Esta organización debería traducirse en una mayor movilidad de portadores de carga, cumpliendo así con uno de los requisitos de un material orgánico para su aplicación en fotovoltaica. De estas dos moléculas, en este trabajo se profundiza en las moléculas tipo quinacridona, ya que el desarrollo de las moléculas tipo epindolidiona se llevó a cabo en un proyecto de investigación financiado por una beca Repsol y concedida a Guillermo Menéndez, alumno del Grado en Tecnologías Industriales de esta escuela. La quinacridona es uno de los pigmentos más utilizados y se estima que la venta anual de los mismos alcanza las 4.000 toneladas por año. Son compuestos muy estables tanto desde el punto de vista térmico como fotoquímico y su síntesis no resulta excesivamente compleja. Son además compuestos no tóxicos y la legislación autoriza su empleo en cosméticos y juguetes para niños. El inconveniente principal de la quinacridona es su elevada insolubilidad (soluble en ácido sulfúrico concentrado), por lo que aunque resulta un material muy atractivo para su aplicación en fotovoltaica, resulta difícil su implementación. De hecho, solo es posible su incorporación en dispositivos fotovoltaicos funcionalizando la quinacridona con algún grupo lábil que le proporcione la suficiente solubilidad para poder ser aplicado y posteriormente eliminar dicho grupo lábil. La propuesta inicial de este proyecto es intentar desarrollar quinacridonas que sean solubles en los disolventes orgánicos más habituales tipo cloruro de metileno o cloroformo, para de este modo poder cumplir con una de las ventajas que, a priori, ofrecen las células fotovoltaicas orgánicas frente a las inorgánicas, como es la facilidad de su procesado. El objetivo se centra, por lo tanto, en la preparación de quinacridonas solubles pero sin renunciar a su capacidad para formar enlaces de hidrógeno ni a su capacidad de apilamiento π-π, ya que se quiere mantener los valores de movilidad de portadores para la quinacridona (movilidad de huecos 0,2 cm2V-1s-1). En primer lugar se intenta la preparación de una quinacridona que presenta la ventaja de que los materiales de partida para su síntesis son comerciales: a partir del succinato de dimetilo y de 4-tetradecilanilina se podía acceder, en una síntesis de cuatro etapas, a la molécula deseada. La elección de la amina aromática con la sustitución en posición 4 presenta la ventaja de que en la etapa de doble ciclación necesaria en la síntesis, solo se forma uno de los regioisómeros posibles; este hecho es de gran relevancia para conseguir compuestos con altas movilidades, ya que la presencia de mezcla de regioisómeros, como se ha demostrado con otros compuestos como el P3HT, reduce considerablemente la movilidad de los portadores. Se obtiene así una quinacridona funcionalizada con dos cadenas lineales de 14 carbonos cada una en posiciones simétricas sobre los anillos aromáticos de los extremos. Se espera que la presencia de la superficie aromática plana y las dos cadenas lineales largas pueda conducir a una organización del material similar a la de un cristal líquido discótico. Sin embargo, el producto obtenido resulta ser tremendamente insoluble, no siendo suficiente las dos cadenas de 14 carbonos para aumentar su solubilidad respecto a la quinacridona sin funcionalizar. Se prepara entonces un derivado de esta quinacridona por alquilación de los nitrógenos. Este derivado, incapaz de formar enlaces de hidrógeno, resulta ser fácilmente soluble lo que proporciona una idea de la importancia de los enlaces de hidrógeno en la organización del compuesto. La idea inicial es conseguir, con una síntesis lo más sencilla posible, una quinacridona soluble, por lo que se decide utilizar la 4-t-butilanilina, también comercial, en lugar de la 4-tetradecilanilina. La cadena de t-butilo solo aporta cuatro átomos de carbono, pero su disposición (tres grupos metilo sobre un mismo átomo de carbono) suele conducir a resultados muy buenos en términos de solubilidad. Otra vez, la incorporación de los dos grupos t-butilo resulta insuficiente en términos de solubilidad del material. En estos momentos, y antes de explorar otro tipo de modificaciones sobre el esqueleto de quinacridona, en principio más complejos, se piensa en utilizar una amina aromática funcionalizada en la posición adyacente a la amina, de manera que el grupo funcional cumpliera una doble misión: por una parte, proporcionar solubilidad y por otra parte, perturbar ligeramente la formación de enlaces de hidrógeno, que han evidenciado ser una de las causas fundamentales para la insolubilidad del compuesto. Se realiza un análisis sobre cuáles podrían ser los grupos funcionales más idóneos en esta posición, valorando dos aspectos: el impedimento estérico que dificultaría la formación de enlaces de hidrógeno y la facilidad en su preparación. Ello conduce a optar por un grupo tioéter como candidato, ya que el 2-aminobencenotiol es un compuesto comercial y su adecuada funcionalización conduciría a una anilina con las propiedades deseadas. Se realiza simultáneamente la preparación de una quinacridona con una cadena de 18 átomos de carbono y otra quinacridona de cadena corta pero ramificada. Y finalmente, con estas quinacridonas se logra obtener compuestos solubles. Por último, se realiza el estudio de sus propiedades ópticas, mediante espectroscopia UV-Visible y fluorescencia, y se determinan experimentalmente los band gap, que se aproximan bastante a los resultados teóricos, en torno a 2,2 eV en disolución. No obstante, y aun cuando el band gap pueda parecer algo elevado, se sabe que en disolución las barreras energéticas son más elevadas que cuando el material se deposita en film. Por otra parte, todas las quinacridonas sintetizadas han demostrado una elevada estabilidad térmica. Como resumen final, el trabajo que aquí se presenta, ha permitido desarrollar una ruta sintética hacia derivados de quinacridona solubles con buenas perspectivas para su aplicación en dispositivos fotovoltaicos.
Resumo:
Compreender a correlação entre as características de um catalisador particular e seu desempenho catalítico tem sido um dos principais objetos da pesquisa em catálise heterogênea a fim de usar esse conhecimento para o desenho racional de catalisadores mais ativos, seletivos e estáveis. A seletividade é um dos fatores mais importantes a ser controlado pelo desenho de catalisadores, podendo ser alcançada de diversas maneiras, levando-se em consideração mudanças do tipo estrutural, química, eletrônica, de composição, de cinética e de energia. O trabalho descrito nessa tese de doutorado compreende a síntese e caracterização de catalisadores compostos de nanopartículas de óxido de cobre, paládio e cobre-paládio e seu estudo em reações de hidrogenação e oxidação seletivas de hidrocarbonetos insaturados. Os catalisadores foram preparados através da deposição de nanopartículas dos metais cataliticamente ativos sobre suportes magneticamente recuperáveis compostos de nanopartículas de magnetita revestidas por sílica com superfícies funcionalizada com diferentes grupos orgânicos. A natureza magnética do suporte permitiu a fácil separação do catalisador do meio reacional pela simples aproximação de um ímã na parede do reator. O catalisador pôde ser completamente separado da fase líquida, fazendo com que a utilização de outros métodos de separação como filtração e centrifugação, comumente utilizados em sistemas heterogêneos líquidos, fossem completamente dispensados. Os catalisadores foram inicialmente testados em reações de hidrogenação de alquenos e alquinos. As reações de hidrogenação foram realizadas utilizando hidrogênio molecular como agente redutor, dispensando a utilização de agentes redutores mais agressivos. Os catalisadores compostos de NPs de Pd mostram excelente atividade e capacidade de reutilização na hidrogenação de cicloexeno, podendo ser utilizados em até 15 ciclos sem perda de atividade. Nas reações de hidrogenação de alquinos, os catalisadores que contêm cobre mostraram maior seletividade para a obtenção dos produtos de semi-hidrogenação, com destaque para o catalisador composto de NPs de CuPd, que não apresenta nem traços do produto de hidrogenação completa na amostra final. Esse catalisador bimetálico alia as características do paládio (elevada atividade) e do cobre (elevada seletividade) para fornecer um catalisador ativo e seletivo para a transformação desejada. Além disso, os grupos funcionais presentes na superfície do suporte catalítico mostraram influência na atividade e seletividade para a hidrogenação de alquenos e alquinos. Os catalisadores sintetizados também foram testados na reação de oxidação de cicloexeno e mostraram seletividade para a produção do composto carbonílico α,β-insaturado, cicloex-2-en-1-ona, que é um reagente de partida de grande interesse para a síntese de diversos materiais na indústria química. As reações de oxidação foram realizadas utilizando-se apenas O2 como oxidante primário, dispensando o uso de oxidantes tóxicos como cromatos, permanganatos ou compostos halogenados, que não são recomendados do ponto de vista ambiental. Os catalisadores sintetizados puderam ser reutilizados em sucessivos ciclos de oxidação, mostrando seletividade para a formação dos produtos alílicos em todos os ciclos. Os catalisadores foram estáveis sob as condições reacionais e não apresentaram problemas de lixiviação da espécie ativa para o meio reacional, que é comum na catálise heterogênea. Um estudo cinético mostrou que, mesmo no início da reação, o catalisador tem seletividade para a ocorrência de oxidação alílica em detrimento da reação de oxidação direta que dá origem ao epóxidos correspondente, e se mostrou condizente com o mecanismo proposto na literatura para a reação de oxidação de alquenos via radicalar.
Resumo:
O objetivo desse projeto de pesquisa foi avaliar a redução do sulfato e promover a remoção do sulfeto, por via de conversão a enxofre elementar, em reatores combinados anaeróbio/microaerado. Para tanto foram utilizados três sistemas com objetivos específicos. A primeira configuração foi um reator anaeróbio de leito fixo e ordenado integrado a um reator microaerado com membrana externa (ABFSB-RME) com o qual se avaliou a influência do tempo de detenção hidráulica (TDH) e da presença de biomassa aderida na remoção do sulfeto. A segunda configuração avaliada foi um reator UASB com um reator microaerado de membrana helicoidal externa (UASB-RMHE), com o qual se avaliou a formação de biofilme no interior da membrana e a alteração do pH para a remoção do sulfeto em sua fase gasosa. A terceira configuração foi um reator anaeróbio de leito fixo e ordenado combinado a um reator microaerado com membrana helicoidal e submersa ao meio liquido (ABFSB-RMHS) com a finalidade de avaliar a remoção do sulfeto com aplicação de fluxo de ar no interior da membrana e avaliar a influência do TDH na eficiência de conversão do sulfeto. Os resultados indicam que a troca periódica das membranas tem influência na eficiência da conversão do sulfeto para o sistema ABFSB-RME. O sistema UASB-RMHE apresentou dados de remoção de sulfeto estáveis durante 35 dias, com remoção de até 90%, porém a retro lavagem da membrana é essencial para o aumento da vida útil do sistema A alteração do pH provocou a deslocamento de equilíbrio do sulfeto, e apresentou remoção do sulfeto no biogás de 98% para pH 7,5 e 50% para pH 7,0. O sistema ABFSB-RMHS propiciou remoção estável de sulfeto e a formação em camadas de enxofre elementar ao redor da membrana que se rompiam permitindo, assim, a sedimentação e recuperação do material sólido. Os resultados obtidos na pesquisa mostraram que os sistemas apresentam viabilidade e potencial no tratamento de águas ricas em compostos de enxofre e para a recuperação de enxofre elementar, além de apresentar versatilidade por meio de variáveis operacionais, com as quais se podem obter o controle e aperfeiçoamento do sistema.