862 resultados para Random Forests Classifier
Resumo:
Abstract
Resumo:
We generalize a previous model of time-delayed reaction–diffusion fronts (Fort and Méndez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc
Resumo:
Abstract
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.
Resumo:
[Abstract]
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
Abstract
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
In this paper, we prove that a self-avoiding walk of infinite length provides a structure that would resolve Olbers' paradox. That is, if the stars of a universe were distributed like the vertices of an infinite random walk with each segment length of about a parsec, then the night sky could be as dark as actually observed on the Earth. Self-avoiding random walk structure can therefore resolve the Olbers' paradox even in a static universe.
Resumo:
Mushroom picking has become a widespread autumn recreational activity in the Central Pyrenees and other regions of Spain. Predictive models that relate mushroom production or fungal species richness with forest stand and site characteristics are not available. This study used mushroom production data from 24 Scots pine plots over 3 years to develop a predictive model that could facilitate forest management decisions when comparing silvicultural options in terms of mushroom production. Mixed modelling was used to model the dependence of mushroom production on stand and site factors. The results showed that productions were greatest when stand basal area was approximately 20 m2 ha-1. Increasing elevation and northern aspect increased total mushroom production as well as the production of edible and marketed mushrooms. Increasing slope decreased productions. Marketed Lactarius spp., the most important group collected in the region, showed similar relationships. The annual variation in mushroom production correlated with autumn rainfall. Mushroom species richness was highest when the total production was highest.
Resumo:
Using numerical simulations we investigate how overall dimensions of random knots scale with their length. We demonstrate that when closed non-self-avoiding random trajectories are divided into groups consisting of individual knot types, then each such group shows the scaling exponent of approximately 0.588 that is typical for self-avoiding walks. However, when all generated knots are grouped together, their scaling exponent becomes equal to 0.5 (as in non-self-avoiding random walks). We explain here this apparent paradox. We introduce the notion of the equilibrium length of individual types of knots and show its correlation with the length of ideal geometric representations of knots. We also demonstrate that overall dimensions of random knots with a given chain length follow the same order as dimensions of ideal geometric representations of knots.
Resumo:
Forest management for groundwater protection is a cheap solution for a vital question, which is implemented for decades all over the world. The main challenge is to insure a constant adequate forest management to preserve the service provided. In Lombok Island, the problem is the lack of implementation of the public regulation in the forest area. Therefore payments for environmental services (PES) are used as an alternative in this weak institutional environment. The results of the field research show that, surprisingly, the "famous" Lombok PES case is not a PES at all, even if there are some payments. This research has however happy ends because other "forest for water" PES have been identified in the field. In addition, the legal review identified a way to solve the lack of legal base for PES implementation. Thus, the PES examples that we identified could be spread all over Indonesia without conflicting other regulations (fiscal, local finance, forest, etc.) and circumventing the forest administrations.
Resumo:
We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.