921 resultados para Radial basis function network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Olfactory systems are evolutionarily ancient, underlying the common requirement for all animals to sense and respond to diverse volatile chemical signals in their environment. Odor detection is mediated by odorant receptors (ORs) that, in most olfactory systems, comprise large families of divergent G protein-coupled receptors. Here, I discuss our and others' recent investigations of ORs in the fruit fly, Drosophila melanogaster, which have revealed insights into the distinct evolutionary origin and molecular function of insect ORs. I also describe a bioinformatics strategy that we developed to identify molecules that function with these insect-specific receptors in odor detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To evaluate morbidity associated with the radial forearm free flap donor site and to compare functional and aesthetic outcomes of ulnar-based transposition flap (UBTF) vs split-thickness skin graft (STSG) closure of the donor site.¦DESIGN: Case-control study.¦SETTING: Tertiary care institution.¦PATIENTS: The inclusion criteria were flap size not exceeding 30 cm(2), patient availability for a single follow-up visit, and performance of surgery at least 6 months previously. Forty-four patients were included in the study and were reviewed. Twenty-two patients had UBTF closure, and 22 had STSG closure.¦MAIN OUTCOME MEASURES: Variables analyzed included wrist mobility, Michigan Hand Outcomes Questionnaire scores, pinch and grip strength (using a dynamometer), and hand sensitivity (using monofilament testing over the radial nerve distribution). In analyses of operated arms vs nonoperated arms, variables obtained only for the operated arms included Vancouver Scar Scale scores and visual analog scale scores for Aesthetics and Overall Arm Function.¦RESULTS: The mean (SD) wrist extension was significantly better in the UBTF group (56.0° [10.4°] for nonoperated arms and 62.0° [9.7°] for operated arms) than in the STSG group (59.0° [7.1°] for nonoperated arms and 58.4° [12.1°] for operated arms) (P = .02). The improvement in wrist range of motion for the UBTF group approached statistical significance (P = .07). All other variables (Michigan Hand Outcomes Questionnaire scores, pinch and grip strength, hand sensitivity, and visual analog scale scores) were significantly better for nonoperated arms vs operated arms, but no significant differences were observed between the UBTF and STSG groups.¦CONCLUSIONS: The radial forearm free flap donor site carries significant morbidity. Donor site UBTF closure was associated with improved wrist extension and represents an alternative method of closure for small donor site defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary The NACHT, LRR and PYD domains containing protein (NALP3) inflammasome is a key regulator of interleukin-1beta (IL-1beta) secretion. As there is strong evidence for a pro-inflammatory role of IL-1beta in rheumatoid arthritis (RA) and in murine models of arthritis, we explored the expression of the different components of the NALP3 inflammasome as well as other nucleotide oligomerization domain (NOD)-like receptors (NLRs) in synovium obtained from patients with RA. The expression of NLRs was also studied in fibroblast lines derived from joint tissue. By immunohistology, NALP3 and apoptosis-associated speck-like protein containing a CARD domain (ASC) were expressed in myeloid and endothelial cells and B cells. T cells expressed ASC but lacked NALP3. In synovial fibroblast lines, NALP3 expression was not detected at the RNA and protein levels and stimulation with known NALP3 agonists failed to induce IL-1beta secretion. Interestingly, we were unable to distinguish RA from osteoarthritis synovial samples on the basis of their basal level of RNA expression of known NLR proteins, though RA samples contained higher levels of caspase-1 assayed by enzyme-linked immunsorbent assay. These results indicate that myeloid and endothelial cells are the principal sources of inflammasome-mediated IL-1beta production in the synovium, and that synovial fibroblasts are unable to activate caspase-1 because they lack NALP3. The NALP3 inflammasome activity does not account for the difference in level of inflammation between RA and osteoarthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incompletely understood. Based on earlier findings that NK cell numbers are reduced in the absence of the transcription factor T cell factor-1 (Tcf-1), my thesis has addressed the precise role of this transcription factor for NK cell development, maturation and function and whether Tcf-1 acts as a nuclear effector of the canonical Wnt signaling pathway to mediate its effects. It is shown that Tcf-1 is selectively required for the emergence of mature BM NK cells. Surprisingly, the emergence of BM NK cells depends on the repressor function of Tcf-1 and is independent of the Wnt pathway. In BM and peripheral NK cells Tcf-1 is found to suppress Granzyme B (GzmB) expression, a key cytotoxic effector molecule required to kill target cells. We provide evidence that GzmB over-expression in the absence of Tcf-1 results in accelerated spontaneous death of bone marrow NK cells and of cytokine stimulated peripheral NK cells. Moreover, Tcf-1 deficient NK cells show reduced target cell killing, which is due to enhanced GzmB-dependent NK cell death induced by the recognition of tumour target cells. Collectively, these data provide significant new insights into the transcriptional regulation of NK cell development and function and suggest a novel mechanism that protects NK cells from the deleterious effects of highly cytotoxic effector molecules. - Les cellules NK (de l'anglais Natural Killer) font partie du système immunitaire inné et sont capables d'éliminer à elles seules les cellules cancéreuses ou infectées. Ces cellules participent dans la régulation et la coordination des réponses innée et adaptative. Lors de leur développement dans la moelle osseuse, les cellules NK vont acquérir leurs fonctions effectrices, un processus contrôlé par des facteurs de transcription mais encore peu connu. Des précédentes travaux ont montré qu'une diminution du nombre de cellules NK corrélait avec l'absence du facteur de transcription Tcf-1 (T cell factor-1), suggérant un rôle important de Tcf-1 dans le développement de cellules NK. Cette thèse a pour but de mieux comprendre le rôle du facteur de transcription Tcf-1 lors du développement et la maturation des cellules NK, ainsi que son interaction avec la voie de signalisation Wnt. Nous avons montré que Tcf-1 est essentiel pour la transition des cellules immatures NK (iNK) à des cellules matures NK (mNK) dans la moelle osseuse, et cela de manière indépendamment de la voie de signalisation Wnt. De manière intéressante, nous avons observé qu'en absence du facteur de transcription Tcf-1, les cellules NK augmentaient l'expression de la protéine Granzyme B (GzmB), une protéine essentielle pour l'élimination des cellules cancéreuses ou infectées. Ceci a pour conséquence, une augmentation de la mort des cellules mNK dans la moelle osseuse ainsi qu'une diminution de leur fonction «tueuses». Ces résultats montrent pour la première fois, le rôle répresseur du facteur de transcription Tcf-1 dans l'expression de la protéine GzmB. L'ensemble de ces résultats apporte de nouveaux éléments concernant le rôle de Tcf-1 dans la régulation du développement et de la fonction des cellules NK et suggèrent un nouveau mécanisme cellulaire de protection contre les effets délétères d'une dérégulation de l'expression des molécules cytotoxique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between the binding of Vicia villosa (VV) lectin and the expression of cytolytic function in T lymphoblasts has been investigated using flow cytofluorometric techniques. Spleen cells activated in vitro in 5-day mixed leukocyte cultures (MLC) were incubated sequentially with VV, rabbit anti-V antiserum, and fluoresceinated sheep anti-rabbit IgG. When these stained MLC cells were passed on a flow cytometer gated to exclude nonviable cells and small lymphocytes, a single heterogeneous peak of fluorescence was seen, as compared to control MLC cells that had not been incubated with VV. Fluorescence of lymphoblasts was dependent upon lectin dose and was eliminated when staining was performed in the presence of N-acetyl-D-galactosamine, the appropriate competitive sugar for VV. T cell blast populations activated against H-2, Mls, or parasite antigens all had comparable levels of fluorescence after staining with VV, although the cytolytic activity of these cells varied widely. Furthermore, when MLC lymphoblasts binding large or small amounts of VV were sorted on the basis of their relative fluorescence intensity and tested for cytolytic function, no appreciable difference in activity between the 2 populations was observed. These results are inconsistent with the hypothesis that VV binds selectively to cytolytic T lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radial displacement of a fluid annulus in a rotating circular Hele-Shaw cell has been investigated experimentally. It has been found that the flow depends sensitively on the wetting conditions at the outer interface. Displacements in a prewet cell are well described by Darcy's law in a wide range of experimental parameters, with little influence of capillary effects. In a dry cell, however, a more careful analysis of the interface motion is required; the interplay between a gradual loss of fluid at the inner interface, and the dependence of capillary forces at the outer interface on interfacial velocity and dynamic contact angle, result in a constant velocity for the interfaces. The experimental results in this case correlate in the form of an empirical scaling relation between the capillary number Ca and a dimensionless group, related to the ratio of centrifugal to capillary forces, which spans about three orders of magnitude in both quantities. Finally, the relative thickness of the coating film left by the inner interface, alpha i, is obtained as a function of Ca.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian brain oscillates through three distinct global activity states: wakefulness, non-rapid eye movement (NREM) sleep and REM sleep. The regulation and function of these 'vigilance' or 'behavioural' states can be investigated over a broad range of temporal and spatial scales and at different levels of functional organization, i.e. from gene expression to memory, in single neurons, cortical columns or the whole brain and organism. We summarize some basic questions that have arisen from recent approaches in the quest for the functions of sleep. Whereas traditionally sleep was viewed to be regulated through top-down control mechanisms, recent approaches have emphasized that sleep is emerging locally and regulated in a use-dependent (homeostatic) manner. Traditional markers of sleep homeostasis, such as the electroencephalogram slow-wave activity, have been linked to changes in connectivity and plasticity in local neuronal networks. Thus waking experience-induced local network changes may be sensed by the sleep homeostatic process and used to mediate sleep-dependent events, benefiting network stabilization and memory consolidation. Although many questions remain unanswered, the available data suggest that sleep function will best be understood by an analysis which integrates sleep's many functional levels with its local homeostatic regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last several years have seen an increasing number of studies that describe effects of oxytocin and vasopressin on the behavior of animals or humans. Studies in humans have reported behavioral changes and, through fMRI, effects on brain function. These studies are paralleled by a large number of reports, mostly in rodents, that have also demonstrated neuromodulatory effects by oxytocin and vasopressin at the circuit level in specific brain regions. It is the scope of this review to give a summary of the most recent neuromodulatory findings in rodents with the aim of providing a potential neurophysiological basis for their behavioral effects. At the same time, these findings may point to promising areas for further translational research towards human applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4).Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.