999 resultados para REY geochemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. SumREE at Site 795 also is affiliated strongly with aluminosilicate phases and yet is diluted only slightly by siliceous input. At Site 797, SumREE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. Ce/Ce* profiles at all three sites increase essentially monotonically with depth and record progressive diagenetic LREE fractionation. The observed Ce/Ce* increases are not responding to changes in the paleoceanographic oxygenation state of the overlying water, as there is no independent evidence to suggest the proper oceanographic conditions. Ce/Ce* correlates slightly better with depth than with age at the two Yamato Basin sites. The downhole increase in Ce/Ce* at Sites 794 and 797 is a passive response to the diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and Lan/Ybn suggests that other processes mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column and that an additional ~38% is recycled at or near the seafloor. Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply buried interstitial waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controversy has surrounded the issue of whether mantle plume activity was responsible for Pangaean continental rifting and massive flood volcanism (resulting in the Central Atlantic Magmatic Province or CAMP, emplaced around 200 Ma) preceding the opening of the central Atlantic Ocean in the Early Mesozoic. Our new Sr-Nd-Pb isotopic and trace element data for the oldest basalts sampled from central Atlantic oceanic crust by deep-sea drilling show that oceanic crust generated from about 160 to 120 Ma displays clear isotopic and chemical signals of plume contamination (e.g., 87Sr/86Sr(i) = 0.7032-0.7036, epsilonNd(t) =+6.2 to +8.2, incompatible element patterns with positive Nb anomalies), but these signals are muted or absent in crust generated between 120 and 80 Ma, which resembles young Atlantic normal mid-ocean ridge basalt. The plume-affected pre-120 Ma Atlantic crustal basalts are isotopically similar to lavas from the Ontong Java Plateau, and may represent one isotopic end-member for CAMP basalts. The strongest plume signature is displayed near the center of CAMP magmatism but the hotspots presently located nearest this location in the mantle reference frame do not appear to be older than latest Cretaceous and are isotopically distinct from the oldest Atlantic crust. The evidence for widespread plume contamination of the nascent Atlantic upper mantle, combined with a lack of evidence for a long-lived volcanic chain associated with this plume, leads us to propose that the enriched signature of early Atlantic crust and possibly the eruption of the CAMP were caused by a relatively short-lived, but large volume plume feature that was not rooted at a mantle boundary layer. Such a phenomenon has been predicted by recent numerical models of mantle circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concretions of iron and manganese oxides and hydrous oxidesóobjects commonly called manganese nodulesóare widely distributed not only on the deep-sea floor but also in shallow marine environments1. Such concretions were not known to occur north of Cape Mendocino in the shallow water zones bordering the North-East Pacific Ocean until the summer of 1966 when they were recovered by one of us (J. W. M.) in dredge samples from Jervis Inlet, a fjord approximately 50 miles north-west of Vancouver, British Columbia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ proton-microprobe analyses are presented for glasses, plagioclases, pyroxenes, olivines, and spinels in eleven samples from Sites 834-836, 839, and 841 (vitrophyric rhyolite), plus a Tongan dacite. Elements analyzed are Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Sn (in spinels only). The data are used to calculate two sets of partition coefficients, one set based on the ratio of element in mineral/element in coexisting glass. The second set of coefficients, thought to be more robust, is corrected by application of the Rayleigh fractionation equations, which requires additional use of modal data. Data are presented for phenocryst core-rim phases and microphenocryst-groundmass phases from a few samples. Comparison with published coefficients reveals an overall consistency with those presented here, but with some notable anomalies. Examples are relatively high Zr values for pyroxenes and abnormally low Mn values in olivines and clinopyroxenes from Site 839 lavas. Some anomalies may reflect kinetic effects, but interpretation of the coefficients is complicated, especially in olivines from Sites 836 and 839, by possible crystal-liquid disequilibrium resulting from mixing processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution patterns and petrographical and mineral chemistry data are described for the most representative basement lithologies occuring as clast in the c. 824 m thick Tertiary sedimentary sequence at the CRP-3 drillsite. These are granule to bolder grain size clasts of igneous and metamorphic rocks. Within the basement clast assemblage, granitoid pebbles are the predominant lithology. They consist of dominant grey biotic-bearing monzogranite, pink biotite-hornblende monzogranite, and biotite-bearing leucomomonzgranite. Minor lithologies include: actinolite-bearing leucotonalite, microgranite, biotite-hornblende quartz-monzonitic porphyr, and foliated biotic leucomonzogranite. Metamorphic clasts include rocks of both granitic and sedimentary derivation. They include mylonitic biotic orthogneiss, with or without garnet, muscovite-bearing quartzite, sillimanite-biotite paragneiss, biotite meta-sandstone, biotite-spotted schist, biotite-clacite-clinoamphibole meta-feldspathic arenite, biotite-calcite-clinozoisite meta-siltstone, biotite±clinoamphibole meta-marl, and graphite-bearing marble. As in previous CRP drillcores, the ubiquitous occurence of biotite±hornblende monzogranite pebbles is indicative of a local provenance, closely mirroring the dominance of these lithologies in the on-shore basement, where the Cambro-Ordovician Granite Harbour Intrusive Complex forms the most extensively exposed rock unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The samples investigated in this study come from DSDP Leg 73 Drill Holes 519A, 522B, and 524, all of which are in the South Atlantic. A general petrographic description of the basalts is given by Carman et al. (1984; doi:10.2973/dsdp.proc.73.120.1984).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first complete cyclic sedimentary successions for the early Paleogene from drilling multiple holes have been retrieved during two ODP expeditions: Leg 198 (Shatsky Rise, NW Pacific Ocean) and Leg 208 (Walvis Ridge, SE Atlantic Ocean). These new records allow us to construct a comprehensive astronomically calibrated stratigraphic framework with an unprecedented accuracy for both the Atlantic and the Pacific Oceans covering the entire Paleocene epoch based on the identification of the stable long-eccentricity cycle (405-kyr). High resolution X-ray fluorescence (XRF) core scanner and non-destructive core logging data from Sites 1209 through1211 (Leg 198) and Sites 1262, 1267 (Leg 208) are the basis for such a robust chronostratigraphy. Former investigated marine (ODP Sites 1001 and 1051) and land-based (e.g., Zumaia) sections have been integrated as well. The high-fidelity chronology is the prerequisite for deciphering mechanisms in relation to prominent transient climatic events as well as completely new insights into Greenhouse climate variability in the early Paleogene. We demonstrate that the Paleocene epoch covers 24 long eccentricity cycles. We also show that no definite absolute age datums for the K/Pg boundary or the Paleocene - Eocene Thermal Maximum (PETM) can be provided by now, because of still existing uncertainties in orbital solutions and radiometric dating. However, we provide two options for tuning of the Paleocene which are only offset by 405-kyr. Our orbitally calibrated integrated Leg 208 magnetostratigraphy is used to revise the Geomagnetic Polarity Time Scale (GPTS) for Chron C29 to C25. We established a high-resolution calcareous nannofossil biostratigraphy for the South Atlantic which allows a much more detailed relative scaling of stages with biozones. The re-evaluation of the South Atlantic spreading rate model features higher frequent oscillations in spreading rates for magnetochron C28r, C27n, and C26n.