997 resultados para REFLECTANCE-DIFFERENCE SPECTROSCOPY
Resumo:
We present K-band spectra of the near infrared counterparts to IRS 2E and IRS 2W which is associated with the ultracompact H II region W51d, both of them embedded sources in the Galactic compact H II region W51 IRS 2. The high spatial resolution observations were obtained with the laser guide star facility and Near-infrared Integral Field Spectrograph (NIFS) mounted at the Gemini-North observatory. The spectrum of the ionizing source of W51d shows the photospheric features N III ( 21155 angstrom) in emission and He II ( 21897 angstrom) in absorption which lead us to classify it as a young O3 type star. We detected CO overtone in emission at 23000 angstrom in the spectrum of IRS 2E, suggesting that it is a massive young object still surrounded by an accretion disk, probably transitioning from the hot core phase to an ultracompact H II region.
Resumo:
We report on oxygen abundances determined from medium-resolution near-infrared spectroscopy for a sample of 57 carbon-enhanced metal-poor (CEMP) stars selected from the Hamburg/ESO Survey. The majority of our program stars exhibit oxygen-to-iron ratios in the range +0.5 < [O/Fe]< + 2.0. The [O/Fe] values for this sample are statistically compared to available high-resolution estimates for known CEMP stars as well as to high-resolution estimates for a set of carbon-normal metal-poor stars. Carbon, nitrogen, and oxygen abundance patterns for a sub-sample of these stars are compared to yield predictions for very metal-poor asymptotic giant branch (AGB) abundances in the recent literature. We find that the majority of our sample exhibit patterns that are consistent with previously studied CEMP stars having s-process-element enhancements and thus have very likely been polluted by carbon- and oxygen-enhanced material transferred from a metal-poor AGB companion.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
We present a new insight on NGC 6034 and UGC 842, two groups of galaxies previously reported in the literature as being fossil groups. The study is based on optical photometry and spectroscopy obtained with the CTIO Blanco telescope and Sloan Digital Sky Survey archival data. We find that NGC 6034 is embedded in a large structure, dominated by three rich clusters and other small groups. Its first and next four ranked galaxies have magnitude differences in the r band and projected distances which violate the optical criteria to classify it as a fossil group. We confirm that the UGC 842 group is a fossil group, but with about half the velocity dispersion that is reported in previous works. The velocity distribution of its galaxies reveals the existence of two structures in its line of sight, one with sigma(nu) similar to 223 km s(-1) and another with sigma(nu) similar to 235 km s(-1), with a difference in velocity of similar to 820 km s(-1). The main structure is dominated by passive galaxies, while these represent similar to 60% of the second structure. The X-ray temperature for the intragroup medium of a group with such a velocity dispersion is expected to be kT similar to 0.5-1 keV, against the observed value of kT similar to 1.9 keV reported in the literature. This result makes UGC 842 a special case among fossil groups because (1) it represents more likely the interaction between two small groups, which warms the intragroup medium and/or (2) it could constitute evidence that member galaxies lost energy in the process of spiraling toward the group center, and decreased the velocity dispersion of the system. As far as we know, UGC 842 is the first low-mass fossil group studied in detail.
Resumo:
Context. HD 181231 is a B5IVe star, which has been observed with the CoRoT satellite during similar to 5 consecutive months and simultaneously from the ground in spectroscopy and spectropolarimetry. Aims. By analysing these data, we aim to detect and characterize as many pulsation frequencies as possible, to search for the presence of beating effects possibly at the origin of the Be phenomenon. Our results will also provide a basis for seismic modelling. Methods. The fundamental parameters of the star are determined from spectral fitting and from the study of the circumstellar emission. The CoRoT photometric data and ground-based spectroscopy are analysed using several Fourier techniques: CLEAN-NG, PASPER, and TISAFT, as well as a time-frequency technique. A search for a magnetic field is performed by applying the LSD technique to the spectropolarimetric data. Results. We find that HD 181231 is a B5IVe star seen with an inclination of similar to 45 degrees. No magnetic field is detected in its photosphere. We detect at least 10 independent significant frequencies of variations among the 54 detected frequencies, interpreted in terms of non-radial pulsation modes and rotation. Two longer-term variations are also detected: one at similar to 14 days resulting from a beating effect between the two main frequencies of short-term variations, the other at similar to 116 days due either to a beating of frequencies or to a zonal pulsation mode. Conclusions. Our analysis of the CoRoT light curve and ground-based spectroscopic data of HD 181231 has led to the determination of the fundamental and pulsational parameters of the star, including beating effects. This will allow a precise seismic modelling of this star.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
The local atomic structures around the Zr atom of pure (undoped) ZrO(2) nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO(2) nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr-O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye-Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to the z direction; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.
Resumo:
The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.
Resumo:
EuTe possesses the centrosymmetric crystal structure m3m of rocksalt type in which the second-harmonic generation is forbidden in electric dipole approximation but the third-harmonic generation (THG) is allowed. We studied the THG spectra of this material and observed several resonances in the vicinity of the band gap at 2.2-2.5 eV and at higher energies up to 4 eV, which are related to four-photon THG processes. The observed resonances are assigned to specific combinations of electronic transitions between the ground 4f(7) state at the top of the valence band and excited 4f(6)5d(1) states of Eu(2+) ions, which form the lowest energy conduction band. Temperature, magnetic field, and rotational anisotropy studies allowed us to distinguish crystallographic and magnetic-field-induced contributions to the THG. A strong modification of THG intensity for the 2.4 eV band and suppression of the THG for the 3.15 eV band was observed in applied magnetic field. Two main features of the THG spectra were assigned to 5d(t(2g)) and 5d(e(g)) subbands at 2.4 eV and 3.15 eV, respectively. A microscopic quantum-mechanical model of the THG response was developed and its conclusions are in qualitative agreement with the experimental results.
Resumo:
Measurements are presented of the complex dynamic Young's modulus of NdNiO(3) and Nd(0.65)Eu(0.35)NiO(3) through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed by an abrupt stiffening of similar to 6%. The anomaly is reproducible between cooling and heating in Nd(0.65)Eu(0.35)NiO(3) but appears only as a slow stiffening during cooling in undoped NdNiO(3), in conformance with the fact that the MIT in RNiO(3) changes from strongly first order to second order when the mean R size is decreased. The elastic anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in Nd(0.65)Eu(0.35)NiO(3). It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic Jahn-Teller (JT) distortions through the MIT, where the JT active Ni(3+) is disproportionated into alternating Ni(3+delta) and Ni(3-delta). The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus is estimated as similar to 3% but does not have a role in determining the MIT, since the otherwise-expected precursor softening is not observed.
Resumo:
A method of using X-ray absorption spectroscopy together with resolved grazing-incidence geometry for depth profiling of atomic, electronic or chemical local structures in thin films is presented. The quantitative deconvolution of thickness-dependent spectral features is performed by fully considering both scattering and absorption formalisms. Surface oxidation and local structural depth profiles in nanometric FePt films are determined, exemplifying the application of the method.
Resumo:
A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
We study rf spectroscopy of a lithium gas with the goal to explore the possibilities for photoemission spectroscopy of a strongly interacting p-wave Fermi gas. Radio-frequency spectra of quasibound p-wave molecules and of free atoms in the vicinity of the p-wave Feshbach resonance located at 159.15G are presented. The spectra are free of detrimental final-state effects. The observed relative magnetic-field shifts of the molecular and atomic resonances confirm earlier measurements realized with direct rf association. Furthermore, evidence of molecule production by adiabatically ramping the magnetic field is observed. Finally, we propose the use of a one-dimensional optical lattice to study anisotropic superfluid gaps as most direct proof of p-wave superfluidity.
Resumo:
Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (similar to 90%), however it does present a low specificity (similar to 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf. (C) 2010 Optical Society of America