992 resultados para RANS (Reynolds-Averaged Navier-Stokes)
Resumo:
Lo studio della turbolenza è di fondamentale importanza non solo per la fluidodinamica teorica ma anche perchè viene riscontrata in una moltitudine di problemi di interesse ingegneristico. All'aumentare del numero di Reynolds, le scale caratteristiche tendono a ridurre le loro dimensioni assolute. Nella fluidodinamica sperimentale già da lungo tempo si è affermata l'anemometria a filo caldo, grazie ad ottime caratteristiche di risoluzione spaziale e temporale. Questa tecnica, caratterizzata da un basso costo e da una relativa semplicità, rende possibile la realizzazione di sensori di tipo artigianale, che hanno il vantaggio di poter essere relizzati in dimensioni inferiori. Nonostante l'ottima risoluzione spaziale degli hot-wire, infatti, si può verificare, ad alto numero di Reynolds, che le dimensioni dell'elemento sensibile siano superiori a quelle delle piccole scale. Questo impedisce al sensore di risolvere correttamente le strutture più piccole. Per questa tesi di laurea è stato allestito un laboratorio per la costruzione di sensori a filo caldo con filo di platino. Sono in questo modo stati realizzati diversi sensori dalle dimensioni caratteristiche inferiori a quelle dei sensori disponibili commercialmente. I sensori ottenuti sono quindi stati testati in un getto turbolento, dapprima confrontandone la risposta con un sensore di tipo commerciale, per verificarne il corretto funzionamento. In seguito si sono eseguite misure più specifiche e limitate ad alcune particolari zone all'interno del campo di moto, dove è probabile riscontrare effetti di risoluzione spaziale. Sono stati analizzati gli effetti della dimensione fisica del sensore sui momenti statistici centrali, sugli spettri di velocità e sulle funzioni di densità di probabilità.
Resumo:
Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.
Resumo:
We consider the inertially driven, time-dependent biaxial extensional motion of inviscid and viscous thinning liquid sheets. We present an analytic solution describing the base flow and examine its linear stability to varicose (symmetric) perturbations within the framework of a long-wave model where transient growth and long-time asymptotic stability are considered. The stability of the system is characterized in terms of the perturbation wavenumber, Weber number, and Reynolds number. We find that the isotropic nature of the base flow yields stability results that are identical for axisymmetric and general two-dimensional perturbations. Transient growth of short-wave perturbations at early to moderate times can have significant and lasting influence on the long-time sheet thickness. For finite Reynolds numbers, a radially expanding sheet is weakly unstable with bounded growth of all perturbations, whereas in the inviscid and Stokes flow limits sheets are unstable to perturbations in the short-wave limit.
Resumo:
Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).
Resumo:
A Reynolds-Stress Turbulence Model has been incorporated with success into the KIVA code, a computational fluid dynamics hydrocode for three-dimensional simulation of fluid flow in engines. The newly implemented Reynolds-stress turbulence model greatly improves the robustness of KIVA, which in its original version has only eddy-viscosity turbulence models. Validation of the Reynolds-stress turbulence model is accomplished by conducting pipe-flow and channel-flow simulations, and comparing the computed results with experimental and direct numerical simulation data. Flows in engines of various geometry and operating conditions are calculated using the model, to study the complex flow fields as well as confirm the model’s validity. Results show that the Reynolds-stress turbulence model is able to resolve flow details such as swirl and recirculation bubbles. The model is proven to be an appropriate choice for engine simulations, with consistency and robustness, while requiring relatively low computational effort.
Resumo:
We present studies of the spatial clustering of inertial particles embedded in turbulent flow. A major part of the thesis is experimental, involving the technique of Phase Doppler Interferometry (PDI). The thesis also includes significant amount of simulation studies and some theoretical considerations. We describe the details of PDI and explain why it is suitable for study of particle clustering in turbulent flow with a strong mean velocity. We introduce the concept of the radial distribution function (RDF) as our chosen way of quantifying inertial particle clustering and present some original works on foundational and practical considerations related to it. These include methods of treating finite sampling size, interpretation of the magnitude of RDF and the possibility of isolating RDF signature of inertial clustering from that of large scale mixing. In experimental work, we used the PDI to observe clustering of water droplets in a turbulent wind tunnel. From that we present, in the form of a published paper, evidence of dynamical similarity (Stokes number similarity) of inertial particle clustering together with other results in qualitative agreement with available theoretical prediction and simulation results. We next show detailed quantitative comparisons of results from our experiments, direct-numerical-simulation (DNS) and theory. Very promising agreement was found for like-sized particles (mono-disperse). Theory is found to be incorrect regarding clustering of different-sized particles and we propose a empirical correction based on the DNS and experimental results. Besides this, we also discovered a few interesting characteristics of inertial clustering. Firstly, through observations, we found an intriguing possibility for modeling the RDF arising from inertial clustering that has only one (sensitive) parameter. We also found that clustering becomes saturated at high Reynolds number.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
In der vorliegenden Besprechung von Peter Paul Rubens’ Lehrschrift De imitatione statuarum (um 1610) und Sir Joshua Reynolds’ Discourse on Sculpture (1780) wird der Versuch unternommen, das Lehrgerüst der Grammatik als ein gemeinsames Referenzmodell herauszuarbeiten und die Position dieser beiden Malergrößen innerhalb der neuzeitlichen Kunsttheorie genauer zu verorten. Hierbei werden besonders die medienspezifischen Eigenschaften von Skulptur im Verhältnis zur Malerei diskutiert, die Maler bei der Nachahmung von antiker Skulptur zu beachten haben.