975 resultados para RADIOLIGAND RECEPTOR BINDING ASSAYS
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved a-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pain was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's alpha-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.
Resumo:
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca2+-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)alpha protein structurally linked to AT(2)R as revealed by their co-immunoprecipitation mimicked the effect of Ang-(3-4) on Ca2+-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi((5-24)) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca2+-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace H-3-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca2+-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-beta-D-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPK alpha 2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. (Endocrinology 153: 3633-3645, 2012)
Resumo:
Background: The Glial Cell-line derived neurotrophic factor (GDNF) is part of the TGF-beta superfamily and is abundantly expressed in the central nervous system. Changes in GDNF homeostasis have been reported in affective disorders. Aim: To assess serum GDNF concentration in elderly subjects with late-life depression, before antidepressant treatment, as compared to healthy elderly controls. Methods: Thirty-four elderly subjects with major depression and 37 age and gender-matched healthy elderly controls were included in this study. Diagnosis of major depression was ascertained by the SCID interview for DSM-IV and the severity of depressive symptoms was assessed by the Hamilton Depression Rating Scale (HDRS-21). Serum GDNF concentration were determined by sandwich ELISA. Results: Patients with major depression showed a significant reduction in GDNF levels as compared to healthy elderly controls (p < 0.001). Also, GDNF level was negatively correlated with HDRS-21 scores (r = -0.343, p = 0.003). Discussion: Our data provide evidence that GDNF may be a state marker of depressive episode in older adults. Changes in the homeostatic control of GDNF production may be a target to development of new antidepressant strategies. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND Cushing's disease is associated with high morbidity and mortality. Pasireotide, a potential therapy, has a unique, broad somatostatin-receptor-binding profile, with high binding affinity for somatostatin-receptor subtype 5. METHODS In this double-blind, phase 3 study, we randomly assigned 162 adults with Cushing's disease and a urinary free cortisol level of at least 1.5 times the upper limit of the normal range to receive subcutaneous pasireotide at a dose of 600 mu g (82 patients) or 900 mu g (80 patients) twice daily. Patients with urinary free cortisol not exceeding 2 times the upper limit of the normal range and not exceeding the baseline level at month 3 continued to receive their randomly assigned dose; all others received an additional 300 mu g twice daily. The primary end point was a urinary free cortisol level at or below the upper limit of the normal range at month 6 without an increased dose. Open-label treatment continued through month 12. RESULTS Twelve of the 82 patients in the 600-mu g group and 21 of the 80 patients in the 900-mu g group met the primary end point. The median urinary free cortisol level decreased by approximately 50% by month 2 and remained stable in both groups. A normal urinary free cortisol level was achieved more frequently in patients with baseline levels not exceeding 5 times the upper limit of the normal range than in patients with higher baseline levels. Serum and salivary cortisol and plasma corticotropin levels decreased, and clinical signs and symptoms of Cushing's disease diminished. Pasireotide was associated with hyperglycemia-related adverse events in 118 of 162 patients; other adverse events were similar to those associated with other somatostatin analogues. Despite declines in cortisol levels, blood glucose and glycated hemoglobin levels increased soon after treatment initiation and then stabilized; treatment with a glucose- lowering medication was initiated in 74 of 162 patients. CONCLUSIONS The significant decrease in cortisol levels in patients with Cushing's disease who received pasireotide supports its potential use as a targeted treatment for corticotropinsecreting pituitary adenomas. (Funded by Novartis Pharma; ClinicalTrials.gov number, NCT00434148.)
Resumo:
Objective: There is accumulating evidence that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological, neurochemical and electrophysiological aspects might contribute to the development of psychiatric symptoms in TLE and the putative neurobiological mechanisms that cause mood disorders in this patient subgroup. Methods: In this review, clinical, experimental and neuropathological findings, as well as neurochemical features of the limbic system were examined together to enhance our understanding of the association between TLE and psychiatric comorbidities. Finally, the value of animal models in epilepsy and mood disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Alterations and neurotransmission disturbance among critical anatomical networks, and impaired or aberrant plastic changes might predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.
Resumo:
Red cell haemoglobin is the fundamental oxygen-transporting molecule in blood, but also a potentially tissue-damaging compound owing to its highly reactive haem groups. During intravascular haemolysis, such as in malaria and haemoglobinopathies(1), haemoglobin is released into the plasma, where it is captured by the protective acute-phase protein haptoglobin. This leads to formation of the haptoglobin-haemoglobin complex, which represents a virtually irreversible non-covalent protein-protein interaction(2). Here we present the crystal structure of the dimeric porcine haptoglobin-haemoglobin complex determined at 2.9 angstrom resolution. This structure reveals that haptoglobin molecules dimerize through an unexpected beta-strand swap between two complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of haemoglobin, explaining the tight binding between haptoglobin and haemoglobin. The haemoglobin-interacting region in the alpha beta dimer is highly overlapping with the interface between the two alpha beta dimers that constitute the native haemoglobin tetramer. Several haemoglobin residues prone to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger receptor CD163 (ref. 3) protrudes from the surface of the distal end of the complex, adjacent to the associated haemoglobin alpha-subunit. Small-angle X-ray scattering measurements of human haptoglobin-haemoglobin bound to the ligand-binding fragment of CD163 confirm receptor binding in this area, and show that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4).
Resumo:
Abstract Background Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis. Results Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein. Conclusion Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3.
Resumo:
Chromatin is a highly dynamic, regulatory component in the process of transcription, repair, recombination and replication. The BRG1 and SNF2H proteins are ATP-dependent chromatin remodeling proteins that modulate chromatin structure to regulate DNA accessibility for DNA-binding proteins involved in these processes. The BRG1 protein is a central ATPase of the SWI/SNF complexes involved in chromatin remodeling associated with regulation of transcription. SWI/SNF complexes are biochemically hetero-geneous but little is known about the unique functional characteristics of the various forms. We have shown that SWI/SNF activity in SW13 cells affects actin filament organization dependent on the RhoA signaling pathway. We have further shown that the biochemical composition of SWI/SNF complexes qualitatively affects the remodeling activity and that the composition of biochemically purified SWI/SNF complexes does not reflect the patterns of chromatin binding of individual subunits. Chromatin binding assays (ChIP) reveal variations among subunits believed to be constitutive, suggesting that the plasticity in SWI/SNF complex composition is greater than suspected. We have also discovered an interaction between BRG1 and the splicing factor Prp8, linking SWI/SNF activity to mRNA processing. We propose a model whereby parts of the biochemical heterogeneity is a result of function and that the local chromatin environment to which the complex is recruited affect SWI/SNF composition. We have also isolated the novel B-WICH complex that contains WSTF, SNF2H, the splicing factor SAP155, the RNA helicase II/Guα, the transcription factor Myb-binding protein 1a, the transcription factor/DNA repair protein CSB and the RNA processing factor DEK. The formation of this complex is dependent on active transcription and links chromatin remodeling by SNF2H to RNA processing. By linking chromatin remodeling complexes with RNA processing proteins our work has begun to build a bridge between chromatin and RNA, suggesting that factors in chromatin associated assemblies translocate onto the growing nascent RNA.
Resumo:
Four glycoproteins (gD, gB, gH, and gL) are required for herpes simplex virus (HSV) entry into the cell and for cell-cell fusion in transfected cells. gD serves as the receptor-binding glycoprotein and as the trigger of fusion; the other three glycoproteins execute fusion between the viral envelope and the plasma or endocytic membranes. Little is known on the interaction of gD with gB, gH, and gL. Here, the interactions between herpes simplex virus gD and its nectin1 receptor or between gD, gB, and gH were analyzed by complementation of the N and C portions of split enhanced green fluorescent protein (EGFP) fused to the glycoproteins. Split EGFP complementation was detected between proteins designated gDN + gHC, gDN + gBC, and gHN + gBC + wtgD, both in cells transfected with two or tree glycoproteins and in cells transfected with the four glycoproteins, commited to form syncytia. The in situ assay provides evidence that gD interacts with gH and gB independently one of the other. We further document the interaction between gH and gB. To elucidate which portions of the glycoproteins interact with each other we generated mutants of gD and gB. gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. Here, we show that PFD is made of subdomains 1 and 2 (amino acids 260–285 and 285–310) and that each one partially contributed to herpes simplex virus infectivity. Chimeric gB molecules composed of HSV and human herpesvirus 8 (HHV8) sequences failed to reach the cell surface and to complement a gB defective virus. By means of pull down experiments we analyzed the interactions of HSV-HHV8 gB chimeras with gH or gD fused to the strep-tag. The gB sequence between aa residues 219-360 was identified as putative region of interaction with gH or critical to the interaction.